Engineering TiO2-based nanostructures for enhanced electrocatalytic and photocatalytic redox reactions

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fadhel F. Sead , Vicky Jain , R. Roopashree , Anita Devi , Aditya Kashyap , Girish Chandra Sharma , Pushpa Negi Bhakuni , Mosstafa Kazemi , Hadi Noorizadeh
{"title":"Engineering TiO2-based nanostructures for enhanced electrocatalytic and photocatalytic redox reactions","authors":"Fadhel F. Sead ,&nbsp;Vicky Jain ,&nbsp;R. Roopashree ,&nbsp;Anita Devi ,&nbsp;Aditya Kashyap ,&nbsp;Girish Chandra Sharma ,&nbsp;Pushpa Negi Bhakuni ,&nbsp;Mosstafa Kazemi ,&nbsp;Hadi Noorizadeh","doi":"10.1016/j.rechem.2025.102544","DOIUrl":null,"url":null,"abstract":"<div><div>The rational engineering of TiO₂-based nanostructures plays a pivotal role in enhancing the redox performance of these materials in both electrocatalytic and photocatalytic systems. This review critically explores recent advances in synthetic strategies, morphological control, and compositional tuning of TiO₂-based nanomaterials, emphasizing their role in energy conversion. Particular attention is given to the performance of TiO₂-based nanostructures in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO₂RR). Key parameters such as size, exposed facets, porosity, and surface states are discussed in relation to their impact on charge transport, light absorption, and active site accessibility. This work systematically examines the mechanistic and parametric contributions of TiO₂-based nanocomposites, elucidating how tailored structures govern charge separation, surface reaction kinetics, and intermediate stabilization in redox processes. For the first time, this review consolidates the electrocatalytic and photocatalytic potential of TiO₂-based nanostructures in energy-related redox processes, providing a cohesive framework to steer the development of advanced catalysts. Furthermore, it addresses challenges, advancements, and future potential of these nanocomposites, highlighting scalable synthesis and integration strategies for sustainable energy applications.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"17 ","pages":"Article 102544"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625005272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational engineering of TiO₂-based nanostructures plays a pivotal role in enhancing the redox performance of these materials in both electrocatalytic and photocatalytic systems. This review critically explores recent advances in synthetic strategies, morphological control, and compositional tuning of TiO₂-based nanomaterials, emphasizing their role in energy conversion. Particular attention is given to the performance of TiO₂-based nanostructures in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO₂RR). Key parameters such as size, exposed facets, porosity, and surface states are discussed in relation to their impact on charge transport, light absorption, and active site accessibility. This work systematically examines the mechanistic and parametric contributions of TiO₂-based nanocomposites, elucidating how tailored structures govern charge separation, surface reaction kinetics, and intermediate stabilization in redox processes. For the first time, this review consolidates the electrocatalytic and photocatalytic potential of TiO₂-based nanostructures in energy-related redox processes, providing a cohesive framework to steer the development of advanced catalysts. Furthermore, it addresses challenges, advancements, and future potential of these nanocomposites, highlighting scalable synthesis and integration strategies for sustainable energy applications.

Abstract Image

工程二氧化钛纳米结构增强电催化和光催化氧化还原反应
在电催化和光催化体系中,合理的工程设计对提高这些材料的氧化还原性能起着关键作用。本文综述了二氧化钛基纳米材料的合成策略、形态控制和成分调节方面的最新进展,强调了它们在能量转换中的作用。特别关注了tio2基纳米结构在析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)和二氧化碳还原反应(CO₂RR)中的性能。关键参数,如尺寸,暴露面,孔隙率和表面状态,讨论了它们对电荷输运,光吸收和活性位点可及性的影响。这项工作系统地研究了基于tio2的纳米复合材料的机理和参数贡献,阐明了定制结构如何控制氧化还原过程中的电荷分离、表面反应动力学和中间稳定性。本文首次整合了二氧化钛基纳米结构在能源相关氧化还原过程中的电催化和光催化潜力,为指导先进催化剂的开发提供了一个有凝聚力的框架。此外,它还讨论了这些纳米复合材料的挑战、进步和未来潜力,突出了可持续能源应用的可扩展合成和集成策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信