Kinetics and statistical physics modeling of heavy metal ions adsorption onto functionalized pyrite composite: Experimental and modeling

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Esmaeil Allahkarami , Ebrahim Allahkarami , Amirreza Azadmehr , Mohammad Ebrahim Shahrabadi
{"title":"Kinetics and statistical physics modeling of heavy metal ions adsorption onto functionalized pyrite composite: Experimental and modeling","authors":"Esmaeil Allahkarami ,&nbsp;Ebrahim Allahkarami ,&nbsp;Amirreza Azadmehr ,&nbsp;Mohammad Ebrahim Shahrabadi","doi":"10.1016/j.rechem.2025.102536","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metal ions such as Cu<sup>2+</sup>, Cd<sup>2+</sup>, Ni<sup>2+</sup>, and Zn<sup>2+</sup> pose serious threats to water quality and public health due to their toxicity and persistence. In this study, a functionalized pyrite composite (FeS₂ core coated with silica) was synthesized and evaluated for its adsorption performance toward these heavy metal ions. Batch adsorption experiments were conducted under varying pH (2−10), contact time (10–60 min), temperature (298–343 K), and initial concentration (100–500 mg/L). Adsorption isotherms were analyzed using Langmuir, Freundlich, Redlich–Peterson, Toth, and other models. The Langmuir model best described the data (R<sup>2</sup> &gt; 0.999), indicating monolayer adsorption with maximum capacities of 145.71 mg/g for Cd<sup>2+</sup> and 81.44 mg/g for Cu<sup>2+</sup>. Kinetic analysis showed that the pseudo-second-order (PSO) model best fit the data (R<sup>2</sup> &gt; 0.998), suggesting chemisorption as the dominant mechanism. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) were calculated from Van't Hoff plots. Negative ΔG° values confirmed spontaneity, while positive ΔH° and ΔS° supported the endothermic and entropy-driven nature of the process. Statistical physics modeling further revealed the number of active sites, the mean adsorption energy (E &lt; 20 kJ/mol), and the adsorption stoichiometry factor (n). These results indicated predominant physisorption with partial chemisorption, particularly for Ni<sup>2+</sup> and Cu<sup>2+</sup>. The study demonstrates that functionalized pyrite composite is a cost-effective, regenerable, and high-capacity adsorbent for heavy metal ion removal. The integration of isotherm, kinetic, thermodynamic, and statistical physics models offers mechanistic insight and predictive power for practical water treatment applications.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"17 ","pages":"Article 102536"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625005193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal ions such as Cu2+, Cd2+, Ni2+, and Zn2+ pose serious threats to water quality and public health due to their toxicity and persistence. In this study, a functionalized pyrite composite (FeS₂ core coated with silica) was synthesized and evaluated for its adsorption performance toward these heavy metal ions. Batch adsorption experiments were conducted under varying pH (2−10), contact time (10–60 min), temperature (298–343 K), and initial concentration (100–500 mg/L). Adsorption isotherms were analyzed using Langmuir, Freundlich, Redlich–Peterson, Toth, and other models. The Langmuir model best described the data (R2 > 0.999), indicating monolayer adsorption with maximum capacities of 145.71 mg/g for Cd2+ and 81.44 mg/g for Cu2+. Kinetic analysis showed that the pseudo-second-order (PSO) model best fit the data (R2 > 0.998), suggesting chemisorption as the dominant mechanism. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) were calculated from Van't Hoff plots. Negative ΔG° values confirmed spontaneity, while positive ΔH° and ΔS° supported the endothermic and entropy-driven nature of the process. Statistical physics modeling further revealed the number of active sites, the mean adsorption energy (E < 20 kJ/mol), and the adsorption stoichiometry factor (n). These results indicated predominant physisorption with partial chemisorption, particularly for Ni2+ and Cu2+. The study demonstrates that functionalized pyrite composite is a cost-effective, regenerable, and high-capacity adsorbent for heavy metal ion removal. The integration of isotherm, kinetic, thermodynamic, and statistical physics models offers mechanistic insight and predictive power for practical water treatment applications.

Abstract Image

功能化黄铁矿复合材料吸附重金属离子的动力学和统计物理模型:实验和模型
重金属离子Cu2+、Cd2+、Ni2+和Zn2+因其毒性和持久性对水质和公众健康构成严重威胁。本研究合成了一种功能化的黄铁矿复合材料(FeS₂芯包覆二氧化硅),并评价了其对这些重金属离子的吸附性能。在不同的pH(2−10)、接触时间(10 - 60 min)、温度(298-343 K)和初始浓度(100-500 mg/L)条件下进行了批量吸附实验。采用Langmuir, Freundlich, Redlich-Peterson, Toth等模型分析吸附等温线。Langmuir模型最能描述数据(R2 >;0.999),表明单层吸附对Cd2+的最大吸附量为145.71 mg/g,对Cu2+的最大吸附量为81.44 mg/g。动力学分析表明,伪二阶(PSO)模型最适合数据(R2 >;0.998),表明化学吸附是主要机理。热力学参数(ΔG°,ΔH°,ΔS°)由范霍夫图计算。负的ΔG°值证实了该过程的自发性,而正的ΔH°和ΔS°支持该过程的吸热和熵驱动性质。统计物理模型进一步揭示了活性位点的数量、平均吸附能(E <;20 kJ/mol),吸附化学计量因子(n)。这些结果表明,主要的物理吸附和部分化学吸附,特别是Ni2+和Cu2+。研究表明功能化黄铁矿复合材料是一种经济、可再生、高容量的重金属离子吸附剂。等温线、动力学、热力学和统计物理模型的集成为实际水处理应用提供了机制洞察力和预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信