Tomas Plachy, Erika Pavlikova, Robert Moucka, Martin Cvek
{"title":"Facile transformation of graphite composites into their porous analogues with superior electrical, thermal, and EMI shielding properties","authors":"Tomas Plachy, Erika Pavlikova, Robert Moucka, Martin Cvek","doi":"10.1016/j.compositesb.2025.112827","DOIUrl":null,"url":null,"abstract":"<div><div>Novel porous conducting polymer composites were prepared through the direct expansion of expandable graphite within a melted polypropylene matrix. A facile <em>in-situ</em> method resulted in a remarkable reduction in the electrical percolation threshold of composites containing expanded graphite, forming an accordion-like network inside the polymer matrix compared to their non-expanded compact analogues. Despite their porosity, the expanded samples showed increased thermal conductivity, and the variation of electrical and thermal conductivity with the filler concentration adhered to the percolation theory and Lichtenecker model, respectively. Depending on the concentration, the expansion process notably enhanced the electromagnetic interference (EMI) shielding efficiency, producing a composite with shielding performance above 20 dB. The presented strategy enables a facile and cost-effective improvement of the electrical, thermal, and EMI shielding properties without affecting the weight of the composite, making it highly relevant for industrial adoption.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"306 ","pages":"Article 112827"},"PeriodicalIF":12.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825007334","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel porous conducting polymer composites were prepared through the direct expansion of expandable graphite within a melted polypropylene matrix. A facile in-situ method resulted in a remarkable reduction in the electrical percolation threshold of composites containing expanded graphite, forming an accordion-like network inside the polymer matrix compared to their non-expanded compact analogues. Despite their porosity, the expanded samples showed increased thermal conductivity, and the variation of electrical and thermal conductivity with the filler concentration adhered to the percolation theory and Lichtenecker model, respectively. Depending on the concentration, the expansion process notably enhanced the electromagnetic interference (EMI) shielding efficiency, producing a composite with shielding performance above 20 dB. The presented strategy enables a facile and cost-effective improvement of the electrical, thermal, and EMI shielding properties without affecting the weight of the composite, making it highly relevant for industrial adoption.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.