{"title":"Catalytic C(sp2) homologation of alkylboranes","authors":"Bradley W. Gardner, Gojko Lalic","doi":"10.1038/s41557-025-01854-4","DOIUrl":null,"url":null,"abstract":"<p>Organoboron compounds are important intermediates in organic synthesis, commonly used in metal-catalysed cross-coupling reactions. Their unique reactivity also allows modifications of their carbon framework with preservation of the valuable boryl group. Traditionally, these homologation reactions have been confined to the formation of alkyl boron compounds via C(<i>sp</i><sup>3</sup>) insertion into a C–B bond. However, recent advancements in C(<i>sp</i><sup>2</sup>)-insertive homologation highlight the potential of these reactions in synthesizing complex alkenes, despite current limitations in scope and control of the alkene geometry. Here we demonstrate a catalytic C(<i>sp</i><sup>2</sup>)-insertive homologation for the regio- and diastereoselective synthesis of complex trisubstituted diborylalkenes from simple alkylboranes and alkynyl boronic esters. Our work demonstrates a broad reaction scope and application of the resulting products in modular and stereoselective synthesis of highly substituted alkenes. Furthermore, we provide evidence supporting a unique mechanism responsible for the excellent stereoselectivity observed in the reaction.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"18 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01854-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organoboron compounds are important intermediates in organic synthesis, commonly used in metal-catalysed cross-coupling reactions. Their unique reactivity also allows modifications of their carbon framework with preservation of the valuable boryl group. Traditionally, these homologation reactions have been confined to the formation of alkyl boron compounds via C(sp3) insertion into a C–B bond. However, recent advancements in C(sp2)-insertive homologation highlight the potential of these reactions in synthesizing complex alkenes, despite current limitations in scope and control of the alkene geometry. Here we demonstrate a catalytic C(sp2)-insertive homologation for the regio- and diastereoselective synthesis of complex trisubstituted diborylalkenes from simple alkylboranes and alkynyl boronic esters. Our work demonstrates a broad reaction scope and application of the resulting products in modular and stereoselective synthesis of highly substituted alkenes. Furthermore, we provide evidence supporting a unique mechanism responsible for the excellent stereoselectivity observed in the reaction.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.