Tornike Mamuladze, Tiago H. Zaninelli, Leon C.D. Smyth, Yue Wu, Daviti Abramishvili, Ruben Silva, Brian Imbiakha, Daan Verhaege, Siling Du, Zachary Papadopoulos, Xingxing Gu, David Lee, Steffen Storck, Richard J. Perrin, Igor Smirnov, Xinzhong Dong, Song Hu, Michael S. Diamond, Felipe A. Pinho-Ribeiro, Jonathan Kipnis
{"title":"Mast cells regulate the brain-dura interface and CSF dynamics","authors":"Tornike Mamuladze, Tiago H. Zaninelli, Leon C.D. Smyth, Yue Wu, Daviti Abramishvili, Ruben Silva, Brian Imbiakha, Daan Verhaege, Siling Du, Zachary Papadopoulos, Xingxing Gu, David Lee, Steffen Storck, Richard J. Perrin, Igor Smirnov, Xinzhong Dong, Song Hu, Michael S. Diamond, Felipe A. Pinho-Ribeiro, Jonathan Kipnis","doi":"10.1016/j.cell.2025.06.046","DOIUrl":null,"url":null,"abstract":"Cerebrospinal fluid (CSF) flow is essential for brain homeostasis, and its disruption is implicated in neurodegenerative and neuroinflammatory diseases. Arachnoid cuff exit (ACE) points, anatomical discontinuities in the arachnoid mater around bridging veins, serve as key sites of CSF-dura exchange. Here, we show that dural mast cells regulate CSF dynamics at ACE points. Upon degranulation, mast cells release histamine, inducing vasodilation of bridging veins and reducing perivascular spaces critical for CSF drainage. During bacterial meningitis, pathogens exploit ACE points to access the brain. However, mast cell activation redirects CSF flow, recruits neutrophils, and limits bacterial invasion. Mice lacking dural mast cells exhibit impaired immune responses and higher brain bacterial loads. These findings reveal dural mast cells as central players in modulating CSF flow and meningeal immunity. Targeting mast cells or their mediators may enhance CNS clearance and defense mechanisms, offering a potential therapeutic avenue for brain infections.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"115 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.06.046","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebrospinal fluid (CSF) flow is essential for brain homeostasis, and its disruption is implicated in neurodegenerative and neuroinflammatory diseases. Arachnoid cuff exit (ACE) points, anatomical discontinuities in the arachnoid mater around bridging veins, serve as key sites of CSF-dura exchange. Here, we show that dural mast cells regulate CSF dynamics at ACE points. Upon degranulation, mast cells release histamine, inducing vasodilation of bridging veins and reducing perivascular spaces critical for CSF drainage. During bacterial meningitis, pathogens exploit ACE points to access the brain. However, mast cell activation redirects CSF flow, recruits neutrophils, and limits bacterial invasion. Mice lacking dural mast cells exhibit impaired immune responses and higher brain bacterial loads. These findings reveal dural mast cells as central players in modulating CSF flow and meningeal immunity. Targeting mast cells or their mediators may enhance CNS clearance and defense mechanisms, offering a potential therapeutic avenue for brain infections.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.