Optimizing the Au Particle Doping Size for Enhanced Photocatalytic Disinfection under Low-Intensity Visible Light

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-24 DOI:10.1021/acsnano.5c07650
Gi Byoung Hwang*, Ki Joon Heo, Woongkyu Jee, Luca Panariello, Jacopo Piovesan, Mabel Cornwell, Alberto Collauto, Andreas Kafizas, Shanom Ali, Caroline Knapp, Alexander J. MacRobert, Asterios Gavriilidis, Ivan P. Parkin, Scott M. Woodley and Jae Hee Jung, 
{"title":"Optimizing the Au Particle Doping Size for Enhanced Photocatalytic Disinfection under Low-Intensity Visible Light","authors":"Gi Byoung Hwang*,&nbsp;Ki Joon Heo,&nbsp;Woongkyu Jee,&nbsp;Luca Panariello,&nbsp;Jacopo Piovesan,&nbsp;Mabel Cornwell,&nbsp;Alberto Collauto,&nbsp;Andreas Kafizas,&nbsp;Shanom Ali,&nbsp;Caroline Knapp,&nbsp;Alexander J. MacRobert,&nbsp;Asterios Gavriilidis,&nbsp;Ivan P. Parkin,&nbsp;Scott M. Woodley and Jae Hee Jung,&nbsp;","doi":"10.1021/acsnano.5c07650","DOIUrl":null,"url":null,"abstract":"<p >Here, we present the effect of 1.2–9.9 nm Au particles on crystal violet-treated polymer under a low intensity of visible light. The use of Au particles ≤ 6.3 nm promoted charge carrier transfer from crystal violet to Au particles. Photospectroscopy analyses and DFT computations revealed that a change in the electronic band structure caused by the size reduction of the particle altered the charge carrier transfer pathway in crystal violet. Especially for crystal violet─1.2 nm Au particles, charge carrier transfer predominantly occurs at the S<sub>1</sub> of crystal violet because the T<sub>1</sub> state lacks sufficient potential energy for transfer. 1.2 nm Au particles on crystal violet not only most significantly enhanced the generation of O<sub>2</sub>•<sup>–</sup>, H<sub>2</sub>O<sub>2</sub>, and <sup>•</sup>OH by minimizing unnecessary side reactions or energy loss but also showed the most potent disinfection activity against <i>Staphylococcus aureus</i>, even at low visible light flux levels (0.037–0.054 mW cm<sup>–2</sup>), which resulted in a 5.3 log reduction in viable bacteria after 6 h exposure to visible light. This finding provides fundamental insights into the Au effect as a cocatalyst in photocatalysts and the development of light-activated self-sterilizing surfaces that can be applied to various hospital surfaces to prevent the spread of pathogens, which remains a global challenge.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 30","pages":"27740–27753"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07650","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07650","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we present the effect of 1.2–9.9 nm Au particles on crystal violet-treated polymer under a low intensity of visible light. The use of Au particles ≤ 6.3 nm promoted charge carrier transfer from crystal violet to Au particles. Photospectroscopy analyses and DFT computations revealed that a change in the electronic band structure caused by the size reduction of the particle altered the charge carrier transfer pathway in crystal violet. Especially for crystal violet─1.2 nm Au particles, charge carrier transfer predominantly occurs at the S1 of crystal violet because the T1 state lacks sufficient potential energy for transfer. 1.2 nm Au particles on crystal violet not only most significantly enhanced the generation of O2, H2O2, and OH by minimizing unnecessary side reactions or energy loss but also showed the most potent disinfection activity against Staphylococcus aureus, even at low visible light flux levels (0.037–0.054 mW cm–2), which resulted in a 5.3 log reduction in viable bacteria after 6 h exposure to visible light. This finding provides fundamental insights into the Au effect as a cocatalyst in photocatalysts and the development of light-activated self-sterilizing surfaces that can be applied to various hospital surfaces to prevent the spread of pathogens, which remains a global challenge.

优化低强度可见光下增强光催化消毒的金颗粒掺杂尺寸。
本文研究了在低强度可见光下,1.2-9.9 nm的Au粒子对结晶紫外光处理聚合物的影响。使用≤6.3 nm的Au粒子促进了载流子从结晶紫向Au粒子的转移。光谱学分析和DFT计算表明,粒子尺寸减小引起的电子能带结构的变化改变了晶体紫中载流子的转移途径。特别是对于结晶紫─1.2 nm的Au粒子,由于T1态缺乏足够的转移势能,载流子转移主要发生在结晶紫的S1态。结晶紫上的1.2 nm金颗粒不仅通过减少不必要的副反应或能量损失而最显著地增强了O2•-、H2O2和•OH的生成,而且即使在低可见光通量水平(0.037-0.054 mW cm-2)下也显示出对金黄色葡萄球菌最有效的消毒活性,这导致在可见光照射6小时后活菌减少5.3对数。这一发现为金作为光催化剂中的助催化剂的作用提供了基本的见解,并为开发可应用于各种医院表面的光活化自消毒表面提供了基础,以防止病原体的传播,这仍然是一个全球性的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信