Electric Eel-Inspired Bioelectromechanical Bandage with Biochemical-Photothermal-Piezoelectric Synergy for Promoting Postoperative Recovery in Diabetes.
{"title":"Electric Eel-Inspired Bioelectromechanical Bandage with Biochemical-Photothermal-Piezoelectric Synergy for Promoting Postoperative Recovery in Diabetes.","authors":"Xiaotong Wu,Shiqin Sheng,Yurui Xu,Jue Shi,Xinghai Ning,Anwei Zhou","doi":"10.1021/acsnano.5c07405","DOIUrl":null,"url":null,"abstract":"Shape-adaptive tissue-responsive adhesive patch (STRAP), inspired by the electric-eel's bioelectric capabilities, is proposed to enhance postsurgical recovery in diabetes. STRAP integrates piezoelectric nanogenerators, photothermal materials, and shape-adaptive fibers to address diabetes-related challenges, including impaired wound healing, infection susceptibility, and regeneration deficits. Its biochemical and photothermal properties promote tissue adhesion through covalent bonding and conformational adaptability, ensuring rapid hemostasis and preventing wound adhesions. STRAP replicates the natural microenvironment for effective regeneration and transforms mechanical energy from acoustic stress into beneficial electrical signals, boosting cellular activity, inhibiting bacterial infection, and accelerating wound repair. Preclinical evaluations across multiple animal models demonstrate STRAP's capacity to dynamically adapt to individual conditions and evolving environments, resulting in superior hemostatic performance in a pig liver injury model, postoperative adhesion prevention in the intestine and stomach, and wound healing acceleration in diabetic mouse, rat, and rabbit models. This underscores the promise of nature-inspired designs in tackling medical challenges. In summary, by integrating rapid hemostasis, infection control, tissue regeneration, and antiadhesion properties, STRAP provides a comprehensive solution for postoperative wound management and recovery.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"75 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c07405","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shape-adaptive tissue-responsive adhesive patch (STRAP), inspired by the electric-eel's bioelectric capabilities, is proposed to enhance postsurgical recovery in diabetes. STRAP integrates piezoelectric nanogenerators, photothermal materials, and shape-adaptive fibers to address diabetes-related challenges, including impaired wound healing, infection susceptibility, and regeneration deficits. Its biochemical and photothermal properties promote tissue adhesion through covalent bonding and conformational adaptability, ensuring rapid hemostasis and preventing wound adhesions. STRAP replicates the natural microenvironment for effective regeneration and transforms mechanical energy from acoustic stress into beneficial electrical signals, boosting cellular activity, inhibiting bacterial infection, and accelerating wound repair. Preclinical evaluations across multiple animal models demonstrate STRAP's capacity to dynamically adapt to individual conditions and evolving environments, resulting in superior hemostatic performance in a pig liver injury model, postoperative adhesion prevention in the intestine and stomach, and wound healing acceleration in diabetic mouse, rat, and rabbit models. This underscores the promise of nature-inspired designs in tackling medical challenges. In summary, by integrating rapid hemostasis, infection control, tissue regeneration, and antiadhesion properties, STRAP provides a comprehensive solution for postoperative wound management and recovery.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.