Rohit Gupta,Ashish Kalkal,Priya Mandal,Diptiranjan Paital,David Brealey,Manish K Tiwari
{"title":"Label-Free Electrochemical Interleukin-6 Sensor Exploiting rGO-Ti3C2Tx MXene Nanocomposites.","authors":"Rohit Gupta,Ashish Kalkal,Priya Mandal,Diptiranjan Paital,David Brealey,Manish K Tiwari","doi":"10.1021/acsami.5c06701","DOIUrl":null,"url":null,"abstract":"This work introduces a novel, rapid, label-free, affinity-enabled electrochemical sensor for the detection of interleukin-6 (IL-6), a critical proinflammatory cytokine associated with severe conditions like sepsis and COVID-19. Unlike conventional approaches, this platform leverages an innovative biofunctional nanocomposite of Ti3C2Tx MXene, tetraethylene pentaamine-functionalized reduced graphene oxide (TEPA-rGO), and Nafion, functionalized with anti-IL-6 antibodies, integrated into a carbon-based screen-printed three-electrode chip. The system achieves unprecedented sensitivity in IL-6 quantification, with a single-digit pg/mL detection limit and a broad range of 3-1000 pg/mL using ∼5 μL of serum. The sensor design is uniquely enhanced through the introduction of a genetic algorithm-based thin-layer diffusion model, which optimizes critical, previously unknown electrochemical transport parameters, including diffusion coefficient, rate constant, charge transfer coefficient, and electrochemically active surface area. This approach represents a significant advancement in biosensor modeling and performance tuning. The sensor demonstrates exceptional selectivity (signal-to-noise ratio ∼ 6.9) against relevant interferents (e.g., sepsis-related antigens, small molecules, electroactive compounds), retains operational stability for a month, and offers a sample-to-answer time of ∼15 min (i.e., up to 12 times faster than traditional ELISA), while maintaining comparable sensitivity. Detailed morphological, topographical, and chemical analyses validate the structural and functional integrity of the TEPA-rGO/MXene/Nafion nanocomposite. By combining cutting-edge nanomaterials with advanced computational modeling, this IL-6 sensor sets a new benchmark for rapid, precise cytokine detection, offering transformative potential for early disease diagnosis and prognosis.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"704 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c06701","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel, rapid, label-free, affinity-enabled electrochemical sensor for the detection of interleukin-6 (IL-6), a critical proinflammatory cytokine associated with severe conditions like sepsis and COVID-19. Unlike conventional approaches, this platform leverages an innovative biofunctional nanocomposite of Ti3C2Tx MXene, tetraethylene pentaamine-functionalized reduced graphene oxide (TEPA-rGO), and Nafion, functionalized with anti-IL-6 antibodies, integrated into a carbon-based screen-printed three-electrode chip. The system achieves unprecedented sensitivity in IL-6 quantification, with a single-digit pg/mL detection limit and a broad range of 3-1000 pg/mL using ∼5 μL of serum. The sensor design is uniquely enhanced through the introduction of a genetic algorithm-based thin-layer diffusion model, which optimizes critical, previously unknown electrochemical transport parameters, including diffusion coefficient, rate constant, charge transfer coefficient, and electrochemically active surface area. This approach represents a significant advancement in biosensor modeling and performance tuning. The sensor demonstrates exceptional selectivity (signal-to-noise ratio ∼ 6.9) against relevant interferents (e.g., sepsis-related antigens, small molecules, electroactive compounds), retains operational stability for a month, and offers a sample-to-answer time of ∼15 min (i.e., up to 12 times faster than traditional ELISA), while maintaining comparable sensitivity. Detailed morphological, topographical, and chemical analyses validate the structural and functional integrity of the TEPA-rGO/MXene/Nafion nanocomposite. By combining cutting-edge nanomaterials with advanced computational modeling, this IL-6 sensor sets a new benchmark for rapid, precise cytokine detection, offering transformative potential for early disease diagnosis and prognosis.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.