{"title":"Optimization of Natural Killer Cell Expansion with K562-mbIL-18/-21 Feeder Cells and Assurance of Feeder Cell-free Products.","authors":"Hantae Jo,Yujung Jo,Seung Kwon Koh,Jinho Kim,SoonHo Kweon,Jeehun Park,Hyun-Young Kim,Duck Cho,Mijeong Lee","doi":"10.3343/alm.2025.0168","DOIUrl":null,"url":null,"abstract":"Background\r\nCancer cell line-derived feeder cells enhance natural killer (NK) cell expansion; however, concerns regarding viable residual feeder cells in the final product limit their use. Evidence supporting the safety of NK-sensitive K562-based feeders, even when irradiated, is scarce. We optimized an NK cell expansion protocol using genetically engineered K562-mbIL-18/-21 (GE-K562) feeder cells and clinical-grade media and confirmed the absence of residual feeder cells.\r\n\r\nMethods\r\nNK cell expansion efficiency was compared between feeder-free and feeder-based systems using CTS NK-Xpander Medium. To achieve optimal NK expansion, various peripheral blood mononuclear cell (PBMC)-to-feeder ratios and re-stimulation frequencies were tested over 21 days. Flow cytometry and BCR::ABL1 quantitative reverse transcription PCR (RT-qPCR) were used to confirm the absence of feeder cells in the final NK cell product.\r\n\r\nResults\r\nFeeder-based systems showed superior NK cell fold expansion compared with that of feeder-free systems. Among feeder-based conditions, NK cells expanded 5,224-fold at a 2:1 PBMC-to-feeder ratio after 3 weeks, relative to 1,450-fold at a 6:1 ratio (P <0.05). Re-stimulation on days 7 and 14 further increased expansion up to 261,457-fold. Irradiated feeder cells showed no proliferation and were eliminated within 3-6 days. On day 21, flow cytometry and BCR::ABL1 RT-qPCR results confirmed the absence of residual feeder cells.\r\n\r\nConclusions\r\nOur optimized NK cell expansion protocol using irradiated GE-K562 feeder cells and clinical-grade media offers a safe and scalable approach to generating large numbers of NK cells, supporting its potential use in clinical immunotherapy applications.","PeriodicalId":8421,"journal":{"name":"Annals of Laboratory Medicine","volume":"32 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Laboratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3343/alm.2025.0168","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Cancer cell line-derived feeder cells enhance natural killer (NK) cell expansion; however, concerns regarding viable residual feeder cells in the final product limit their use. Evidence supporting the safety of NK-sensitive K562-based feeders, even when irradiated, is scarce. We optimized an NK cell expansion protocol using genetically engineered K562-mbIL-18/-21 (GE-K562) feeder cells and clinical-grade media and confirmed the absence of residual feeder cells.
Methods
NK cell expansion efficiency was compared between feeder-free and feeder-based systems using CTS NK-Xpander Medium. To achieve optimal NK expansion, various peripheral blood mononuclear cell (PBMC)-to-feeder ratios and re-stimulation frequencies were tested over 21 days. Flow cytometry and BCR::ABL1 quantitative reverse transcription PCR (RT-qPCR) were used to confirm the absence of feeder cells in the final NK cell product.
Results
Feeder-based systems showed superior NK cell fold expansion compared with that of feeder-free systems. Among feeder-based conditions, NK cells expanded 5,224-fold at a 2:1 PBMC-to-feeder ratio after 3 weeks, relative to 1,450-fold at a 6:1 ratio (P <0.05). Re-stimulation on days 7 and 14 further increased expansion up to 261,457-fold. Irradiated feeder cells showed no proliferation and were eliminated within 3-6 days. On day 21, flow cytometry and BCR::ABL1 RT-qPCR results confirmed the absence of residual feeder cells.
Conclusions
Our optimized NK cell expansion protocol using irradiated GE-K562 feeder cells and clinical-grade media offers a safe and scalable approach to generating large numbers of NK cells, supporting its potential use in clinical immunotherapy applications.
期刊介绍:
Annals of Laboratory Medicine is the official journal of Korean Society for Laboratory Medicine. The journal title has been recently changed from the Korean Journal of Laboratory Medicine (ISSN, 1598-6535) from the January issue of 2012. The JCR 2017 Impact factor of Ann Lab Med was 1.916.