Juan Manuel Delgado-Collado,Francisco José Fernández de Córdova,Pilar Palma,Juan Cámpora,Antonio Rodríguez-Delgado
{"title":"Turning the Tables: Ligand-Centered Hydride Shuttling in Organometallic BIP-Al Systems.","authors":"Juan Manuel Delgado-Collado,Francisco José Fernández de Córdova,Pilar Palma,Juan Cámpora,Antonio Rodríguez-Delgado","doi":"10.1021/acs.inorgchem.5c02587","DOIUrl":null,"url":null,"abstract":"The reversible storage and release of hydride equivalents remains a central challenge in the design of biomimetic redox systems. Cationic 2,6-bis(imino)pyridine organoaluminum complexes [(4-R-BIP)AlR2]+ (where R = H; R' = Me, 1a; R' = Et, 1b; R = Bn; R' = Me, 1c) and their neutral 2,6-bis(imino)-4-R-dihydropyridinate counterparts [(4-R-HBIP)AlR2] 2a-c are presented as chemically reversible hydride exchangers. Interconversion between these systems is achieved through strong reducing agents such as M+[HBEt3]- (where M = Li; Na) or LiAlH4, while powerful electrophiles like B(C6F5)3 or cationic trityl salts Ph3C+ enable the reverse transformation, with the latter providing complete selectivity. Overall, this reversible hydride exchange mirrors natural NAD(P)H/NADP+ cofactor system. These findings establish a new platform for ligand-centered hydride shuttling, where the metal fragment acts as a passive modulator─inverting the traditional roles assigned to metal and ligand.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"25 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c02587","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The reversible storage and release of hydride equivalents remains a central challenge in the design of biomimetic redox systems. Cationic 2,6-bis(imino)pyridine organoaluminum complexes [(4-R-BIP)AlR2]+ (where R = H; R' = Me, 1a; R' = Et, 1b; R = Bn; R' = Me, 1c) and their neutral 2,6-bis(imino)-4-R-dihydropyridinate counterparts [(4-R-HBIP)AlR2] 2a-c are presented as chemically reversible hydride exchangers. Interconversion between these systems is achieved through strong reducing agents such as M+[HBEt3]- (where M = Li; Na) or LiAlH4, while powerful electrophiles like B(C6F5)3 or cationic trityl salts Ph3C+ enable the reverse transformation, with the latter providing complete selectivity. Overall, this reversible hydride exchange mirrors natural NAD(P)H/NADP+ cofactor system. These findings establish a new platform for ligand-centered hydride shuttling, where the metal fragment acts as a passive modulator─inverting the traditional roles assigned to metal and ligand.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.