Anaerobic HgII reduction is driven by cellular HgII-thiol interactions.

Access microbiology Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.1099/acmi.0.000932.v3
N C Lavoie, A J Poulain
{"title":"Anaerobic HgII reduction is driven by cellular HgII-thiol interactions.","authors":"N C Lavoie, A J Poulain","doi":"10.1099/acmi.0.000932.v3","DOIUrl":null,"url":null,"abstract":"<p><p>Redox reactions play a critical role in determining the availability of mercury species, Hg<sup>II</sup> and Hg<sup>0</sup>, to anaerobic microbes responsible for methylating inorganic mercury into toxic monomethylmercury. Some anaerobes also contribute to Hg cycling in methylation hotspots by reducing Hg<sup>II</sup> to its gaseous elemental form, Hg<sup>0</sup>. However, their contributions remain poorly quantified due to limited mechanistic insights and the absence of genetic targets. In this study, we investigated the mechanisms of anaerobic Hg<sup>II</sup> reduction in the versatile anoxygenic photoheterotroph and fermenter <i>Heliomicrobium modesticaldum</i> Ice1. Given Hg<sup>II</sup> strong electrophilic affinity for thiol groups, we hypothesized that cellular thiols are key interaction sites mediating Hg<sup>II</sup> reduction. Exposure of <i>H. modesticaldum</i> to the thiol-alkylating agent <i>N</i>-ethylmaleimide (NEM), which irreversibly binds thiols, resulted in a concentration-dependent inhibition of Hg<sup>0</sup> production during both photoheterotrophy and fermentation. Hg partitioning assays with <i>Escherichia coli</i> cells revealed no significant differences in Hg-cell partitioning in the presence or absence of NEM, suggesting that Hg<sup>II</sup> reduction is dependent on intracellular thiol interactions. These findings highlight the importance of thiol-mediated pathways in Heliobacterial Hg<sup>II</sup> reduction. Although the exact cellular components remain unidentified, we discuss potential thiol-containing coupling sites that warrant further investigation.</p>","PeriodicalId":94366,"journal":{"name":"Access microbiology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Access microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/acmi.0.000932.v3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Redox reactions play a critical role in determining the availability of mercury species, HgII and Hg0, to anaerobic microbes responsible for methylating inorganic mercury into toxic monomethylmercury. Some anaerobes also contribute to Hg cycling in methylation hotspots by reducing HgII to its gaseous elemental form, Hg0. However, their contributions remain poorly quantified due to limited mechanistic insights and the absence of genetic targets. In this study, we investigated the mechanisms of anaerobic HgII reduction in the versatile anoxygenic photoheterotroph and fermenter Heliomicrobium modesticaldum Ice1. Given HgII strong electrophilic affinity for thiol groups, we hypothesized that cellular thiols are key interaction sites mediating HgII reduction. Exposure of H. modesticaldum to the thiol-alkylating agent N-ethylmaleimide (NEM), which irreversibly binds thiols, resulted in a concentration-dependent inhibition of Hg0 production during both photoheterotrophy and fermentation. Hg partitioning assays with Escherichia coli cells revealed no significant differences in Hg-cell partitioning in the presence or absence of NEM, suggesting that HgII reduction is dependent on intracellular thiol interactions. These findings highlight the importance of thiol-mediated pathways in Heliobacterial HgII reduction. Although the exact cellular components remain unidentified, we discuss potential thiol-containing coupling sites that warrant further investigation.

厌氧HgII还原是由细胞HgII-硫醇相互作用驱动的。
氧化还原反应在确定厌氧微生物对汞种类(HgII和Hg0)的可得性方面起着关键作用,厌氧微生物负责将无机汞甲基化成有毒的单甲基汞。一些厌氧菌还通过将HgII还原为气态元素形式Hg0来促进甲基化热点地区的汞循环。然而,由于有限的机制认识和缺乏遗传靶标,他们的贡献仍然很差的量化。在本研究中,我们研究了多功能无氧光异养菌和发酵剂Heliomicrobium modesticaldum Ice1中厌氧HgII还原的机制。鉴于HgII对巯基有很强的亲电亲和力,我们假设细胞巯基是介导HgII还原的关键相互作用位点。将H. modesticalum暴露于硫醇烷基化剂n-乙基马来酰亚胺(NEM)中,可以不可逆地结合硫醇,导致光异养和发酵过程中Hg0的产生呈浓度依赖性抑制。用大肠杆菌细胞进行的汞分配试验显示,在NEM存在或不存在的情况下,汞细胞的分配没有显著差异,这表明HgII的降低依赖于细胞内硫醇的相互作用。这些发现强调了硫醇介导的途径在日光杆菌HgII减少中的重要性。虽然确切的细胞成分仍未确定,但我们讨论了潜在的含硫醇偶联位点,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信