A 40.68-MHz Fully-Integrated Voltage/Current-Mode Dual-Output PMU for Wireless Neural Implants.

Yi-Han Ou-Yang, Ronald Wijermars, Pyungwoo Yeon, Tianqi Lu, Amin Arbabian, Wouter A Serdijn, Sijun Du, Dante G Muratore
{"title":"A 40.68-MHz Fully-Integrated Voltage/Current-Mode Dual-Output PMU for Wireless Neural Implants.","authors":"Yi-Han Ou-Yang, Ronald Wijermars, Pyungwoo Yeon, Tianqi Lu, Amin Arbabian, Wouter A Serdijn, Sijun Du, Dante G Muratore","doi":"10.1109/TBCAS.2025.3591228","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a fully-integrated single-input dual-output power management unit operating both in voltage/ current modes for powering mm-scale wireless neural implants. The chip operates in voltage mode most of the time, using an active full-wave rectifier to regulate a low-voltage, high-load output with high power efficiency and low output ripple (<32 mV<sub>pp</sub>). It switches to current mode rectification when generating a high-voltage, low-load output. This dual-mode operation allows for flexible power distribution and configurable voltage ratios between the two outputs. The selected 40.68 MHz operating frequency reduces the required capacitances for input impedance matching and output filtering, enabling on-chip integration; the only external component is the receiver coil. A novel resonance breakup switch compatible with full-wave rectification ensures a smooth cold start-up of the chip without any external voltage supply. The chip was fabricated using 40-nm CMOS technology with an active area of 1.18 mm<sup>2</sup>and was tested in a wireless power link. Measurement results demonstrate that the chip can simultaneously regulate two outputs, $V_{LV} = \\text{1 V}$ and $V_{HV} = \\text{2 V}$, with a tested maximum output power of 10 mW and 32.6 μW on $V_{LV}$ and $V_{HV}$ , respectively. At the optimal output power condition $(P_{LV} = 4.4 \\sim 6.7\\, \\text{mW})$, the system achieves a peak power conversion efficiency of 85.87% and a peak end-to-end efficiency of 17.32% when regulating $V_{LV}$. The end-to-end efficiency drops by only 2.38% when regulating both outputs with $R_{LV} = 225 \\Omega$ and $R_{HV} = 400 \\,\\text{k}\\Omega$.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3591228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a fully-integrated single-input dual-output power management unit operating both in voltage/ current modes for powering mm-scale wireless neural implants. The chip operates in voltage mode most of the time, using an active full-wave rectifier to regulate a low-voltage, high-load output with high power efficiency and low output ripple (<32 mVpp). It switches to current mode rectification when generating a high-voltage, low-load output. This dual-mode operation allows for flexible power distribution and configurable voltage ratios between the two outputs. The selected 40.68 MHz operating frequency reduces the required capacitances for input impedance matching and output filtering, enabling on-chip integration; the only external component is the receiver coil. A novel resonance breakup switch compatible with full-wave rectification ensures a smooth cold start-up of the chip without any external voltage supply. The chip was fabricated using 40-nm CMOS technology with an active area of 1.18 mm2and was tested in a wireless power link. Measurement results demonstrate that the chip can simultaneously regulate two outputs, $V_{LV} = \text{1 V}$ and $V_{HV} = \text{2 V}$, with a tested maximum output power of 10 mW and 32.6 μW on $V_{LV}$ and $V_{HV}$ , respectively. At the optimal output power condition $(P_{LV} = 4.4 \sim 6.7\, \text{mW})$, the system achieves a peak power conversion efficiency of 85.87% and a peak end-to-end efficiency of 17.32% when regulating $V_{LV}$. The end-to-end efficiency drops by only 2.38% when regulating both outputs with $R_{LV} = 225 \Omega$ and $R_{HV} = 400 \,\text{k}\Omega$.

用于无线神经植入物的40.68 mhz全集成电压/电流模式双输出PMU。
本文介绍了一种完全集成的单输入双输出电源管理单元,可在电压/电流模式下工作,用于为毫米级无线神经植入物供电。该芯片大部分时间在电压模式下工作,使用有源全波整流器来调节具有高功率效率和低输出纹波(pp)的低压,高负载输出。当产生高压、低负载输出时,它切换到电流模式整流。这种双模式操作允许灵活的功率分配和可配置的电压比之间的两个输出。选择的40.68 MHz工作频率降低了输入阻抗匹配和输出滤波所需的电容,实现了片上集成;唯一的外部元件是接收线圈。与全波整流兼容的新型谐振分解开关确保芯片在没有任何外部电压供应的情况下顺利冷启动。该芯片采用40纳米CMOS技术制造,有效面积为1.18 mm2,并在无线电源链路中进行了测试。测试结果表明,该芯片可同时调节$V_{LV} = \text{1 V}$和$V_{HV} = \text{2 V}$两个输出,在$V_{LV}$和$V_{HV}$上的最大输出功率分别为10 mW和32.6 μW。在最优输出功率条件$(P_{LV} = 4.4 \sim 6.7\, \text{mW})$下,系统的峰值功率转换效率为85.87% and a peak end-to-end efficiency of 17.32% when regulating $V_{LV}$. The end-to-end efficiency drops by only 2.38% when regulating both outputs with $R_{LV} = 225 \Omega$ and $R_{HV} = 400 \,\text{k}\Omega$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信