Shunxiang Fan, Tim Newbold, Jan C Axmacher, Charlotte L Outhwaite, Yi Zou, Zhenrong Yu, Yunhui Liu
{"title":"Arthropod biodiversity loss from nitrogen deposition is buffered by natural and semi-natural habitats.","authors":"Shunxiang Fan, Tim Newbold, Jan C Axmacher, Charlotte L Outhwaite, Yi Zou, Zhenrong Yu, Yunhui Liu","doi":"10.1371/journal.pbio.3003285","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen (N) deposition is known to strongly modify biogeochemical cycles and trophic interactions, in turn altering ecosystem functioning and plant diversity around the globe. However, our understanding of N deposition effects on arthropod diversity remains limited. Here, we investigate how N deposition impacts the diversity of arthropods by combining biodiversity data from the PREDICTS database with data on global N deposition and land cover using mixed-effects models. We then explore the potential for semi-natural and natural habitats ('SNH') to buffer against potential N deposition-linked biodiversity losses. N deposition has a negative effect on arthropod biodiversity. Both, species richness and abundance are significantly reduced in areas of high levels of N deposition when compared to areas of low N deposition, with responses varying across different land-use types. The strongest negative effects of N deposition on arthropod diversity were observed in locations where the local land use entails the least anthropogenic modification. At the same time, with the exception of cropland-dominated landscapes, increases in the amount of SNH in the surrounding landscape reduced arthropod biodiversity losses associated with N deposition. We conclude that SNH can play an important role in mitigating the negative effects of N deposition on arthropod diversity, with the conservation and creation of these habitats promoting arthropod diversity even under high levels of N deposition.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 7","pages":"e3003285"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003285","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen (N) deposition is known to strongly modify biogeochemical cycles and trophic interactions, in turn altering ecosystem functioning and plant diversity around the globe. However, our understanding of N deposition effects on arthropod diversity remains limited. Here, we investigate how N deposition impacts the diversity of arthropods by combining biodiversity data from the PREDICTS database with data on global N deposition and land cover using mixed-effects models. We then explore the potential for semi-natural and natural habitats ('SNH') to buffer against potential N deposition-linked biodiversity losses. N deposition has a negative effect on arthropod biodiversity. Both, species richness and abundance are significantly reduced in areas of high levels of N deposition when compared to areas of low N deposition, with responses varying across different land-use types. The strongest negative effects of N deposition on arthropod diversity were observed in locations where the local land use entails the least anthropogenic modification. At the same time, with the exception of cropland-dominated landscapes, increases in the amount of SNH in the surrounding landscape reduced arthropod biodiversity losses associated with N deposition. We conclude that SNH can play an important role in mitigating the negative effects of N deposition on arthropod diversity, with the conservation and creation of these habitats promoting arthropod diversity even under high levels of N deposition.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.