Combining panel-based and whole-transcriptome-based gene fusion detection by long-read sequencing.

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-08-18 Epub Date: 2025-07-21 DOI:10.1016/j.crmeth.2025.101111
Karleena Rybacki, Feng Xu, Hannah M Deutsch, Mian Umair Ahsan, Joe Chan, Zizhuo Liang, Yuanquan Song, Marilyn Li, Kai Wang
{"title":"Combining panel-based and whole-transcriptome-based gene fusion detection by long-read sequencing.","authors":"Karleena Rybacki, Feng Xu, Hannah M Deutsch, Mian Umair Ahsan, Joe Chan, Zizhuo Liang, Yuanquan Song, Marilyn Li, Kai Wang","doi":"10.1016/j.crmeth.2025.101111","DOIUrl":null,"url":null,"abstract":"<p><p>We present a comprehensive gene fusion (GF) detection and analysis workflow that combines targeted panel-based and whole-transcriptome long-read sequencing. We first adapted libraries from the short-read CHOP Cancer Fusion Panel, which targets 119 oncogenes commonly implicated in cancer fusions, for use on Oxford Nanopore Technologies' long-read sequencing platform. Long-read sequencing successfully detected known GFs in panel-positive samples, confirming compatibility, and enabled reduced turnaround times. To expand GF discovery in clinically challenging cases, we analyzed 24 glioma samples with negative short-read fusion panel results using whole-transcriptome long-read sequencing. This identified 20 candidate GFs in panel-negative samples that were absent from current fusion databases, all of which were experimentally validated. In summary, we introduce a computational workflow that combines panel-based and whole-transcriptome long-read sequencing with tailored analysis pipelines to enable fast and comprehensive GF detection in cancer.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101111"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive gene fusion (GF) detection and analysis workflow that combines targeted panel-based and whole-transcriptome long-read sequencing. We first adapted libraries from the short-read CHOP Cancer Fusion Panel, which targets 119 oncogenes commonly implicated in cancer fusions, for use on Oxford Nanopore Technologies' long-read sequencing platform. Long-read sequencing successfully detected known GFs in panel-positive samples, confirming compatibility, and enabled reduced turnaround times. To expand GF discovery in clinically challenging cases, we analyzed 24 glioma samples with negative short-read fusion panel results using whole-transcriptome long-read sequencing. This identified 20 candidate GFs in panel-negative samples that were absent from current fusion databases, all of which were experimentally validated. In summary, we introduce a computational workflow that combines panel-based and whole-transcriptome long-read sequencing with tailored analysis pipelines to enable fast and comprehensive GF detection in cancer.

结合基于面板和基于全转录组的基因融合检测的长读测序。
我们提出了一种综合的基因融合(GF)检测和分析工作流程,结合了靶向小组和全转录组长读测序。我们首先改编了短读CHOP Cancer Fusion Panel的文库,该文库针对119个与癌症融合有关的致癌基因,用于Oxford Nanopore Technologies的长读测序平台。长读测序成功地检测了面板阳性样品中的已知基因,确认了兼容性,并缩短了周转时间。为了在具有临床挑战性的病例中扩大GF的发现,我们使用全转录组长读测序分析了24个短读融合阴性的胶质瘤样本。在目前的融合数据库中没有的面板阴性样本中确定了20个候选基因,所有这些基因都经过了实验验证。总之,我们引入了一种计算工作流程,将基于小组的全转录组长读测序与定制的分析管道相结合,从而能够快速全面地检测癌症中的GF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信