Nour Awad, Peter J Larson, Cheick A Sissoko, Laurel L Bond, Gregory R Dion
{"title":"Metagenomic whole genome shotgun analysis of the airway microbiome in laryngotracheal stenosis: a pilot study.","authors":"Nour Awad, Peter J Larson, Cheick A Sissoko, Laurel L Bond, Gregory R Dion","doi":"10.1038/s41598-025-11468-y","DOIUrl":null,"url":null,"abstract":"<p><p>The airway microbiome has been implicated in the pathogenesis of laryngotracheal stenosis (LTS), yet prior studies using 16 S rRNA sequencing have limited sub-genus level resolution. Metagenomic whole genome shotgun sequencing (mWGS) allows for strain-level taxonomic and functional genomic analysis, providing detailed insights into specific organisms and pathways. A pilot study was conducted to explore the advantages and challenges of mWGS in investigating the airway metagenome in LTS. mWGS was conducted on 12 intraoperative swab samples from 8 LTS patients, divided into tracheostomy-dependent (n = 3) and non-tracheostomy (n = 5) groups, and 4 controls. Patient comorbidities, antibiotic use, and medications were documented. Biobakery workflows were used for taxonomic and functional profiling. Species-specific reference databases were constructed for 6 abundant species for strain-level analyses. LTS samples had decreased taxonomic diversity and were dominated by species with previously described roles in other chronic inflammatory processes such as Staphylococcus aureus, Streptococcus parasanguinis, Streptococcus mitis, and Corynebacterium pseudogenitalium. LTS samples were enriched for pathways involved in fatty acid biosynthesis and formaldehyde metabolism. Our results identified tracheostomy as an important potential confounder in airway metagenomics but show mWGS techniques are promising in uncovering microbiota correlates in LTS that could reveal disease-specific biomarkers, comorbidity links, and therapeutic targets.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26570"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11468-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The airway microbiome has been implicated in the pathogenesis of laryngotracheal stenosis (LTS), yet prior studies using 16 S rRNA sequencing have limited sub-genus level resolution. Metagenomic whole genome shotgun sequencing (mWGS) allows for strain-level taxonomic and functional genomic analysis, providing detailed insights into specific organisms and pathways. A pilot study was conducted to explore the advantages and challenges of mWGS in investigating the airway metagenome in LTS. mWGS was conducted on 12 intraoperative swab samples from 8 LTS patients, divided into tracheostomy-dependent (n = 3) and non-tracheostomy (n = 5) groups, and 4 controls. Patient comorbidities, antibiotic use, and medications were documented. Biobakery workflows were used for taxonomic and functional profiling. Species-specific reference databases were constructed for 6 abundant species for strain-level analyses. LTS samples had decreased taxonomic diversity and were dominated by species with previously described roles in other chronic inflammatory processes such as Staphylococcus aureus, Streptococcus parasanguinis, Streptococcus mitis, and Corynebacterium pseudogenitalium. LTS samples were enriched for pathways involved in fatty acid biosynthesis and formaldehyde metabolism. Our results identified tracheostomy as an important potential confounder in airway metagenomics but show mWGS techniques are promising in uncovering microbiota correlates in LTS that could reveal disease-specific biomarkers, comorbidity links, and therapeutic targets.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.