Modular assembly of polyoxometalate clusters at the sub-1 nm scale.

IF 16 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Fenghua Zhang, Wenxiong Shi, Qingda Liu, Xun Wang
{"title":"Modular assembly of polyoxometalate clusters at the sub-1 nm scale.","authors":"Fenghua Zhang, Wenxiong Shi, Qingda Liu, Xun Wang","doi":"10.1038/s41596-025-01212-1","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic-level manufacturing enables the bottom-up fabrication of nanomaterials with tailored structures and properties. Clusters with atomic precise structures can be used as superatom building blocks to construct superstructures with exceptional properties beyond their individual properties. However, the programmable and large-scale synthesis of cluster assemblies remains challenging. This protocol describes the detailed experimental procedures for the modular assembly of polyoxometalate (POM) clusters into subnanomaterials by programmable interactions under simple and mild conditions. In this approach different types of POM clusters (0.7-1.8 nm in size) are coated with quaternary ammonium or oleylamine ligands using either two-phase or solvothermal methods. The assembly process depends on the interactions between atom clusters, ligands and the reaction matrix, all of which can be modified to generate a library of subnanometer superstructures. The four intercluster connection modes are metal cation-induced coordinative connection, anion bridged covalent connection, synergistic noncovalent interaction and cluster-nucleus co-assembly. A library that includes single-cluster nanowires, clusterphenes and nanosheets with single-cluster thicknesses, can be prepared within 3-12 h. Owing to their ultrahigh surface atom ratio and electron delocalization, the resulting subnanometer POM assemblies with rich structural and compositional diversity exhibit excellent properties and application potential in terms of mechanics, catalysis and chirality. This procedure is suitable for users with prior expertise in the synthesis of inorganic and cluster-based nanomaterials.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01212-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic-level manufacturing enables the bottom-up fabrication of nanomaterials with tailored structures and properties. Clusters with atomic precise structures can be used as superatom building blocks to construct superstructures with exceptional properties beyond their individual properties. However, the programmable and large-scale synthesis of cluster assemblies remains challenging. This protocol describes the detailed experimental procedures for the modular assembly of polyoxometalate (POM) clusters into subnanomaterials by programmable interactions under simple and mild conditions. In this approach different types of POM clusters (0.7-1.8 nm in size) are coated with quaternary ammonium or oleylamine ligands using either two-phase or solvothermal methods. The assembly process depends on the interactions between atom clusters, ligands and the reaction matrix, all of which can be modified to generate a library of subnanometer superstructures. The four intercluster connection modes are metal cation-induced coordinative connection, anion bridged covalent connection, synergistic noncovalent interaction and cluster-nucleus co-assembly. A library that includes single-cluster nanowires, clusterphenes and nanosheets with single-cluster thicknesses, can be prepared within 3-12 h. Owing to their ultrahigh surface atom ratio and electron delocalization, the resulting subnanometer POM assemblies with rich structural and compositional diversity exhibit excellent properties and application potential in terms of mechanics, catalysis and chirality. This procedure is suitable for users with prior expertise in the synthesis of inorganic and cluster-based nanomaterials.

模块化组装多金属酸氧酯簇在亚1纳米尺度。
原子级制造使自底向上制造具有定制结构和性能的纳米材料成为可能。具有原子精确结构的团簇可以用作超原子构建块,以构建具有超越其单个性质的特殊性质的超结构。然而,可编程和大规模的集群组装仍然具有挑战性。本协议描述了在简单温和的条件下,通过可编程相互作用将多金属酸氧酯(POM)簇模块化组装成亚纳米材料的详细实验过程。在这种方法中,不同类型的POM簇(0.7-1.8 nm大小)采用两相或溶剂热方法涂覆季铵盐或油胺配体。组装过程取决于原子团簇、配体和反应基质之间的相互作用,所有这些都可以被修改以生成亚纳米超结构库。簇间的四种连接方式分别是金属阳离子诱导的配位连接、阴离子桥接的共价连接、协同非共价相互作用和簇核共组装。在3-12 h内可制备出单簇纳米线、簇烯和单簇厚度的纳米片。由于其超高的表面原子比和电子离域,所制备的亚纳米POM组件具有丰富的结构和成分多样性,在力学、催化和手性方面表现出优异的性能和应用潜力。本程序适用于在无机和簇基纳米材料合成方面具有先验专业知识的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信