Fei Yi, Tal Cohen, Natalie Zimmerman, Friederike Dündar, Paul Zumbo, Razan Eltilib, Erica J Brophy, Hannah Arkin, Judith Feucht, Michael V Gormally, Christopher S Hackett, Korbinian N Kropp, Inaki Etxeberria, Smita S Chandran, Zeguo Zhao, Winson Cai, Anthony F Daniyan, Jae H Park, Caleb A Lareau, Katharine C Hsu, Michel Sadelain, Doron Betel, Christopher A Klebanoff
{"title":"CAR-engineered lymphocyte persistence is governed by a FAS ligand-FAS autoregulatory circuit.","authors":"Fei Yi, Tal Cohen, Natalie Zimmerman, Friederike Dündar, Paul Zumbo, Razan Eltilib, Erica J Brophy, Hannah Arkin, Judith Feucht, Michael V Gormally, Christopher S Hackett, Korbinian N Kropp, Inaki Etxeberria, Smita S Chandran, Zeguo Zhao, Winson Cai, Anthony F Daniyan, Jae H Park, Caleb A Lareau, Katharine C Hsu, Michel Sadelain, Doron Betel, Christopher A Klebanoff","doi":"10.1038/s43018-025-01009-x","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR)-engineered lymphocytes treat B cell malignancies; however, limited persistence can restrain the full therapeutic potential of this approach. FAS ligand (FAS-L)/FAS interactions govern lymphocyte homeostasis. Knowledge of which cells express FAS-L in patients with cancer and whether these sources compromise CAR persistence remains incomplete. Here, we constructed a single-cell atlas of diverse cancers to identify cellular subsets expressing FASLG, the gene encoding FAS-L. We discovered that FASLG expression is limited primarily to endogenous T cells, natural killer (NK) cells and CAR-T cells, while tumor and stromal cell expression is minimal. To establish whether CAR-T and CAR-NK cell survival is FAS-L regulated, we performed competitive fitness assays using FAS-dominant negative receptor (ΔFAS)-modified lymphocytes. Following transfer, ΔFAS-expressing CAR-T/CAR-NK cells became enriched, a phenomenon that mechanistically was reverted through FASLG knockout. By contrast, FASLG was dispensable for CAR-mediated tumor killing. In multiple models in female mice, ΔFAS coexpression enhanced antitumor efficacy. Together, these findings reveal that CAR-engineered lymphocyte persistence is governed by a FAS-L/FAS autoregulatory circuit.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":28.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-01009-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR)-engineered lymphocytes treat B cell malignancies; however, limited persistence can restrain the full therapeutic potential of this approach. FAS ligand (FAS-L)/FAS interactions govern lymphocyte homeostasis. Knowledge of which cells express FAS-L in patients with cancer and whether these sources compromise CAR persistence remains incomplete. Here, we constructed a single-cell atlas of diverse cancers to identify cellular subsets expressing FASLG, the gene encoding FAS-L. We discovered that FASLG expression is limited primarily to endogenous T cells, natural killer (NK) cells and CAR-T cells, while tumor and stromal cell expression is minimal. To establish whether CAR-T and CAR-NK cell survival is FAS-L regulated, we performed competitive fitness assays using FAS-dominant negative receptor (ΔFAS)-modified lymphocytes. Following transfer, ΔFAS-expressing CAR-T/CAR-NK cells became enriched, a phenomenon that mechanistically was reverted through FASLG knockout. By contrast, FASLG was dispensable for CAR-mediated tumor killing. In multiple models in female mice, ΔFAS coexpression enhanced antitumor efficacy. Together, these findings reveal that CAR-engineered lymphocyte persistence is governed by a FAS-L/FAS autoregulatory circuit.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.