Justine Mathoux, Marc-Michel Wilson, Sujithra Srinivas, Gabrielle Litovskich, Leticia Villalba Benito, Cindy Tran, Jaideep Kesavan, Aileen Harnett, Theresa Auer, Amaya Sanz-Rodriguez, Mohammad Kh A E Alkhayyat, Mairéad Sullivan, Zining Liu, Yifan Huang, Austin Lacey, Norman Delanty, Jane Cryan, Francesca M Brett, Michael A Farrell, Donncha F O'Brien, Pablo M Casillas-Espinosa, Eva M Jimenez-Mateos, Jeffrey C Glennon, Mary Canavan, David C Henshall, Gary P Brennan
{"title":"N6-methyladenosine (m6A) dysregulation contributes to network excitability in temporal lobe epilepsy.","authors":"Justine Mathoux, Marc-Michel Wilson, Sujithra Srinivas, Gabrielle Litovskich, Leticia Villalba Benito, Cindy Tran, Jaideep Kesavan, Aileen Harnett, Theresa Auer, Amaya Sanz-Rodriguez, Mohammad Kh A E Alkhayyat, Mairéad Sullivan, Zining Liu, Yifan Huang, Austin Lacey, Norman Delanty, Jane Cryan, Francesca M Brett, Michael A Farrell, Donncha F O'Brien, Pablo M Casillas-Espinosa, Eva M Jimenez-Mateos, Jeffrey C Glennon, Mary Canavan, David C Henshall, Gary P Brennan","doi":"10.1172/jci.insight.188612","DOIUrl":null,"url":null,"abstract":"<p><p>Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 14","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.188612","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Analogous to DNA methylation and protein phosphorylation, it is now well understood that RNA is also subject to extensive processing and modification. N6-methyladenosine (m6A) is the most abundant internal RNA modification and regulates RNA fate in several ways, including stability and translational efficiency. The role of m6A in both experimental and human epilepsy remains unknown. Here, we used transcriptome-wide m6A arrays to obtain a detailed analysis of the hippocampal m6A-ome from both mouse and human epilepsy samples. We combined this with human proteomic analyses and show that epileptic tissue displays disrupted metabolic and autophagic pathways that may be directly linked to m6A processing. Specifically, our results suggest that m6A levels inversely correlate with protein pathway activation. Finally, we show that elevated levels of m6A decrease seizure susceptibility and severity in mice. Together, our findings indicate that m6A represents an additional layer of gene regulation complexity in epilepsy and may contribute to the pathomechanisms that drive the development and maintenance of hyperexcitable brain networks.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.