Pouya Goleij, Mohammad Amin Khazeei Tabari, Mohadeseh Poudineh, Pantea Majma Sanaye, Haroon Khan, Alan Prem Kumar, Danaé S Larsen, Maria Daglia
{"title":"Therapeutic potential of melatonin-induced mitophagy in the pathogenesis of Alzheimer's disease.","authors":"Pouya Goleij, Mohammad Amin Khazeei Tabari, Mohadeseh Poudineh, Pantea Majma Sanaye, Haroon Khan, Alan Prem Kumar, Danaé S Larsen, Maria Daglia","doi":"10.1007/s10787-025-01859-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neurons rely heavily on functional mitochondria for energy production. Mitochondrial dysfunction is a key player in age-related neurodegenerative diseases like Alzheimer's disease (AD). In AD, damaged mitochondria accumulate early, worsening the disease. This dysfunction disrupts cellular balance in neurons, leading to energy deficiencies, calcium imbalances, and oxidative stress. These issues further aggravate the harmful effects of amyloid beta (Aβ) plaques and tau tangles, ultimately leading to synaptic dysfunction, memory loss, and cognitive decline. While a complex link exists between mitochondrial dysfunction and AD hallmarks like Aβ plaques and tau tangles, the exact cause-and-effect relationship remains unclear. Additionally, recent evidence suggests impaired mechanisms for mitophagy in AD. Mitophagy is crucial for neuronal health, and studies have found changes to proteins involved in this process, mitochondrial dynamics, and mitochondrial production in AD. Impaired mitophagy might also be linked to problems with how cells fuse waste disposal compartments (autophagosomes) with lysosomes, and issues with maintaining proper acidity within lysosomes. Interestingly, melatonin, a hormone known for regulating sleep, has recently emerged as a potential neuroprotective agent. Studies using a mouse model of AD showed that melatonin treatment improved cognitive function by enhancing mitophagy. These findings suggest that melatonin's ability to improve mitophagy may be a promising avenue for future AD therapies. Therefore, in this review, we discuss the therapeutic effect of melatonin on mitochondrial dysfunction, especially mitophagy, in AD.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01859-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurons rely heavily on functional mitochondria for energy production. Mitochondrial dysfunction is a key player in age-related neurodegenerative diseases like Alzheimer's disease (AD). In AD, damaged mitochondria accumulate early, worsening the disease. This dysfunction disrupts cellular balance in neurons, leading to energy deficiencies, calcium imbalances, and oxidative stress. These issues further aggravate the harmful effects of amyloid beta (Aβ) plaques and tau tangles, ultimately leading to synaptic dysfunction, memory loss, and cognitive decline. While a complex link exists between mitochondrial dysfunction and AD hallmarks like Aβ plaques and tau tangles, the exact cause-and-effect relationship remains unclear. Additionally, recent evidence suggests impaired mechanisms for mitophagy in AD. Mitophagy is crucial for neuronal health, and studies have found changes to proteins involved in this process, mitochondrial dynamics, and mitochondrial production in AD. Impaired mitophagy might also be linked to problems with how cells fuse waste disposal compartments (autophagosomes) with lysosomes, and issues with maintaining proper acidity within lysosomes. Interestingly, melatonin, a hormone known for regulating sleep, has recently emerged as a potential neuroprotective agent. Studies using a mouse model of AD showed that melatonin treatment improved cognitive function by enhancing mitophagy. These findings suggest that melatonin's ability to improve mitophagy may be a promising avenue for future AD therapies. Therefore, in this review, we discuss the therapeutic effect of melatonin on mitochondrial dysfunction, especially mitophagy, in AD.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]