Therapeutic potential of luteolin in neurodegenerative disorders: targeting Nrf2, NFĸB, MAPK, and JAK-STAT pathways to combat neuroinflammation and apoptosis.

IF 5.3 2区 医学 Q2 IMMUNOLOGY
Koleshwar Mahto, Omkar Kumar Kuwar, Aayushi Maloo, Nileshwar Kalia
{"title":"Therapeutic potential of luteolin in neurodegenerative disorders: targeting Nrf2, NFĸB, MAPK, and JAK-STAT pathways to combat neuroinflammation and apoptosis.","authors":"Koleshwar Mahto, Omkar Kumar Kuwar, Aayushi Maloo, Nileshwar Kalia","doi":"10.1007/s10787-025-01846-3","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's disease, Multiple sclerosis and Amyotrophic Lateral Sclerosis, are characterized by progressive neuronal loss, oxidative stress, chronic neuroinflammation, mitochondrial dysfunction, and apoptosis. The Nrf2/ARE, IĸB/NFĸB, MAPK/AP-1, and JAK-STAT signaling pathways play a pivotal role in these pathological processes, making them promising therapeutic targets. Luteolin, a naturally occurring flavonoid, has demonstrated potent antioxidant, anti-inflammatory, and neuroprotective properties by modulating these interconnected pathways. Activation of Nrf2/ARE signaling by luteolin enhances cellular antioxidant defences, while its inhibition of NFĸB, MAPK/AP-1, and JAK-STAT pathways suppresses neuroinflammation and apoptotic signalling, thereby mitigating neuronal damage. Emerging evidences suggest that luteolin effectively reduces neurotoxic effects by regulating inflammatory cytokine production, stabilizing mitochondrial function, and maintaining redox homeostasis. Its ability to interfere with crosstalk between these signaling pathways highlights its potential as a multi-targeted neuroprotective agent. Preclinical studies have provided strong evidence supporting luteolin's role in mitigating neurodegeneration, suggesting its applicability in neurodegenerative disease management. These findings underscore the therapeutic potential of luteolin in neurodegenerative diseases by targeting multiple pathological mechanisms. However, further investigations are needed to fully elucidate its molecular mechanisms and optimize its therapeutic benefits.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01846-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's disease, Multiple sclerosis and Amyotrophic Lateral Sclerosis, are characterized by progressive neuronal loss, oxidative stress, chronic neuroinflammation, mitochondrial dysfunction, and apoptosis. The Nrf2/ARE, IĸB/NFĸB, MAPK/AP-1, and JAK-STAT signaling pathways play a pivotal role in these pathological processes, making them promising therapeutic targets. Luteolin, a naturally occurring flavonoid, has demonstrated potent antioxidant, anti-inflammatory, and neuroprotective properties by modulating these interconnected pathways. Activation of Nrf2/ARE signaling by luteolin enhances cellular antioxidant defences, while its inhibition of NFĸB, MAPK/AP-1, and JAK-STAT pathways suppresses neuroinflammation and apoptotic signalling, thereby mitigating neuronal damage. Emerging evidences suggest that luteolin effectively reduces neurotoxic effects by regulating inflammatory cytokine production, stabilizing mitochondrial function, and maintaining redox homeostasis. Its ability to interfere with crosstalk between these signaling pathways highlights its potential as a multi-targeted neuroprotective agent. Preclinical studies have provided strong evidence supporting luteolin's role in mitigating neurodegeneration, suggesting its applicability in neurodegenerative disease management. These findings underscore the therapeutic potential of luteolin in neurodegenerative diseases by targeting multiple pathological mechanisms. However, further investigations are needed to fully elucidate its molecular mechanisms and optimize its therapeutic benefits.

木犀草素在神经退行性疾病中的治疗潜力:靶向Nrf2, NFĸB, MAPK和JAK-STAT通路对抗神经炎症和细胞凋亡
神经退行性疾病,包括阿尔茨海默病、帕金森病、亨廷顿病、多发性硬化症和肌萎缩性侧索硬化症,其特征是进行性神经元丧失、氧化应激、慢性神经炎症、线粒体功能障碍和细胞凋亡。Nrf2/ARE、IĸB/NFĸB、MAPK/AP-1和JAK-STAT信号通路在这些病理过程中起关键作用,使它们成为有希望的治疗靶点。木犀草素是一种天然存在的类黄酮,通过调节这些相互联系的途径,已经证明了有效的抗氧化、抗炎和神经保护特性。木犀草素激活Nrf2/ARE信号通路可增强细胞抗氧化防御能力,而其对NFĸB、MAPK/AP-1和JAK-STAT通路的抑制作用可抑制神经炎症和凋亡信号通路,从而减轻神经元损伤。新出现的证据表明木犀草素通过调节炎症细胞因子的产生、稳定线粒体功能和维持氧化还原稳态来有效地减少神经毒性作用。它能够干扰这些信号通路之间的串扰,这突出了它作为多靶点神经保护剂的潜力。临床前研究提供了强有力的证据支持木犀草素在减轻神经退行性疾病中的作用,表明其在神经退行性疾病治疗中的适用性。这些发现强调木犀草素通过针对多种病理机制治疗神经退行性疾病的潜力。然而,需要进一步的研究来充分阐明其分子机制并优化其治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信