{"title":"Recent advances in AI-based toxicity prediction for drug discovery.","authors":"Hyundo Lee, Jisan Kim, Ji-Woon Kim, Yoonji Lee","doi":"10.3389/fchem.2025.1632046","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicity, defined as the potential harm a substance can cause to living organisms, requires the implementation of stringent regulatory standards to ensure public safety. These standards involve comprehensive testing frameworks, including hazard identification, dose-response evaluation, exposure assessment, and risk characterization. In drug discovery and development, these processes are often complex, time-consuming, and also resource-intensive. Toxicity-related failures in the later stages of drug development can lead to substantial financial losses, underscoring the need for reliable toxicity prediction during the early discovery phases. The advent of computational approaches has accelerated a shift toward <i>in silico</i> modeling, virtual screening, and, notably, artificial intelligence (AI) to identify potential toxicities earlier in the pipeline. Ongoing advances in databases, algorithms, and computational power have further expanded AI's role in pharmaceutical research. Today, AI models are capable of predicting wide range of toxicity endpoints, such as hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, and genotoxicity, based on diverse molecular representations ranging from traditional descriptors to graph-based methods. This review provides an in-depth examination of AI-driven toxicity prediction, emphasizing its transformative impact on drug discovery and its growing importance in improving safety assessments.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1632046"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1632046","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxicity, defined as the potential harm a substance can cause to living organisms, requires the implementation of stringent regulatory standards to ensure public safety. These standards involve comprehensive testing frameworks, including hazard identification, dose-response evaluation, exposure assessment, and risk characterization. In drug discovery and development, these processes are often complex, time-consuming, and also resource-intensive. Toxicity-related failures in the later stages of drug development can lead to substantial financial losses, underscoring the need for reliable toxicity prediction during the early discovery phases. The advent of computational approaches has accelerated a shift toward in silico modeling, virtual screening, and, notably, artificial intelligence (AI) to identify potential toxicities earlier in the pipeline. Ongoing advances in databases, algorithms, and computational power have further expanded AI's role in pharmaceutical research. Today, AI models are capable of predicting wide range of toxicity endpoints, such as hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, and genotoxicity, based on diverse molecular representations ranging from traditional descriptors to graph-based methods. This review provides an in-depth examination of AI-driven toxicity prediction, emphasizing its transformative impact on drug discovery and its growing importance in improving safety assessments.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.