Recent advances in AI-based toxicity prediction for drug discovery.

IF 4.2 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2025-07-08 eCollection Date: 2025-01-01 DOI:10.3389/fchem.2025.1632046
Hyundo Lee, Jisan Kim, Ji-Woon Kim, Yoonji Lee
{"title":"Recent advances in AI-based toxicity prediction for drug discovery.","authors":"Hyundo Lee, Jisan Kim, Ji-Woon Kim, Yoonji Lee","doi":"10.3389/fchem.2025.1632046","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicity, defined as the potential harm a substance can cause to living organisms, requires the implementation of stringent regulatory standards to ensure public safety. These standards involve comprehensive testing frameworks, including hazard identification, dose-response evaluation, exposure assessment, and risk characterization. In drug discovery and development, these processes are often complex, time-consuming, and also resource-intensive. Toxicity-related failures in the later stages of drug development can lead to substantial financial losses, underscoring the need for reliable toxicity prediction during the early discovery phases. The advent of computational approaches has accelerated a shift toward <i>in silico</i> modeling, virtual screening, and, notably, artificial intelligence (AI) to identify potential toxicities earlier in the pipeline. Ongoing advances in databases, algorithms, and computational power have further expanded AI's role in pharmaceutical research. Today, AI models are capable of predicting wide range of toxicity endpoints, such as hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, and genotoxicity, based on diverse molecular representations ranging from traditional descriptors to graph-based methods. This review provides an in-depth examination of AI-driven toxicity prediction, emphasizing its transformative impact on drug discovery and its growing importance in improving safety assessments.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1632046"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1632046","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Toxicity, defined as the potential harm a substance can cause to living organisms, requires the implementation of stringent regulatory standards to ensure public safety. These standards involve comprehensive testing frameworks, including hazard identification, dose-response evaluation, exposure assessment, and risk characterization. In drug discovery and development, these processes are often complex, time-consuming, and also resource-intensive. Toxicity-related failures in the later stages of drug development can lead to substantial financial losses, underscoring the need for reliable toxicity prediction during the early discovery phases. The advent of computational approaches has accelerated a shift toward in silico modeling, virtual screening, and, notably, artificial intelligence (AI) to identify potential toxicities earlier in the pipeline. Ongoing advances in databases, algorithms, and computational power have further expanded AI's role in pharmaceutical research. Today, AI models are capable of predicting wide range of toxicity endpoints, such as hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, and genotoxicity, based on diverse molecular representations ranging from traditional descriptors to graph-based methods. This review provides an in-depth examination of AI-driven toxicity prediction, emphasizing its transformative impact on drug discovery and its growing importance in improving safety assessments.

基于人工智能的药物毒性预测研究进展。
毒性被定义为一种物质可能对生物体造成的潜在危害,需要实施严格的监管标准以确保公共安全。这些标准涉及全面的测试框架,包括危害识别、剂量反应评估、暴露评估和风险表征。在药物发现和开发中,这些过程通常是复杂的,耗时的,也是资源密集型的。在药物开发的后期阶段,与毒性有关的失败可能导致重大的经济损失,这强调了在早期发现阶段进行可靠的毒性预测的必要性。计算方法的出现加速了向计算机建模、虚拟筛选以及人工智能(AI)的转变,以在管道的早期识别潜在的毒性。数据库、算法和计算能力的不断进步进一步扩大了人工智能在制药研究中的作用。今天,人工智能模型能够基于从传统描述符到基于图的方法的各种分子表示来预测广泛的毒性终点,如肝毒性、心脏毒性、肾毒性、神经毒性和遗传毒性。本综述对人工智能驱动的毒性预测进行了深入研究,强调了其对药物发现的变革性影响及其在改善安全性评估方面日益增长的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信