Polymers and immersion time shape bacterial pathogen and antibiotic resistance profiles in aquaculture facilities.

IF 3.2 3区 生物学 Q2 MICROBIOLOGY
Jeanne Naudet, Jean-Christophe Auguet, Thierry Bouvier, Raherimino Rakotovao, Tony Motte, Loïc Gaumez, Tania Crucitti, Fabien Rieuvilleneuve, Emmanuelle Roque d'Orbcastel
{"title":"Polymers and immersion time shape bacterial pathogen and antibiotic resistance profiles in aquaculture facilities.","authors":"Jeanne Naudet, Jean-Christophe Auguet, Thierry Bouvier, Raherimino Rakotovao, Tony Motte, Loïc Gaumez, Tania Crucitti, Fabien Rieuvilleneuve, Emmanuelle Roque d'Orbcastel","doi":"10.1093/femsec/fiaf076","DOIUrl":null,"url":null,"abstract":"<p><p>Most equipment used in aquaculture farms is made of plastic. Plastics-associated biofilms may contain potential human pathogenic bacteria (PHPB) and antibiotic-resistant bacteria (ARB). Understanding the influence of farming practices on the biofouling development and composition is thus essential to control associated microbiological risks. We combined results from metabarcoding analyses, bacterial cultures, and antibiotic susceptibility testing to compare the bacterial pathobiome and resistome associated with plastic aquaculture equipment, including two polyamide nets and a polyester liner, with those associated to a hemp net and a glass control. Over the 3 months of incubation in an aquaculture farm, plastics exhibited neither higher levels of PHPB nor more multiple antibiotic resistance compared to other solid substrates, but they did present specific PHPB and ARB profiles. Bacterial members of the Vibrionaceae and Staphylococcaceae families were more abundant in plastic PHPB communities (respectively 47% and 22% of PHPB reads) than in other substrate ones (4% and 0.22% of PHPB reads). The plastic-associated antibiotic resistance profiles showed higher resistance against quinolones. These results suggest that aquaculture equipment could act as a reservoir for some PHPB and ARB, and that equipment composition and immersion time could be levers to control associated sanitary risks.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf076","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most equipment used in aquaculture farms is made of plastic. Plastics-associated biofilms may contain potential human pathogenic bacteria (PHPB) and antibiotic-resistant bacteria (ARB). Understanding the influence of farming practices on the biofouling development and composition is thus essential to control associated microbiological risks. We combined results from metabarcoding analyses, bacterial cultures, and antibiotic susceptibility testing to compare the bacterial pathobiome and resistome associated with plastic aquaculture equipment, including two polyamide nets and a polyester liner, with those associated to a hemp net and a glass control. Over the 3 months of incubation in an aquaculture farm, plastics exhibited neither higher levels of PHPB nor more multiple antibiotic resistance compared to other solid substrates, but they did present specific PHPB and ARB profiles. Bacterial members of the Vibrionaceae and Staphylococcaceae families were more abundant in plastic PHPB communities (respectively 47% and 22% of PHPB reads) than in other substrate ones (4% and 0.22% of PHPB reads). The plastic-associated antibiotic resistance profiles showed higher resistance against quinolones. These results suggest that aquaculture equipment could act as a reservoir for some PHPB and ARB, and that equipment composition and immersion time could be levers to control associated sanitary risks.

Abstract Image

Abstract Image

Abstract Image

聚合物和浸泡时间影响水产养殖设施中细菌病原体和抗生素耐药性。
水产养殖场使用的大多数设备都是由塑料制成的。塑料相关生物膜可能含有潜在的人类致病菌(PHPB)和耐药菌(ARB)。因此,了解耕作方式对生物污垢发展和组成的影响对于控制相关的微生物风险至关重要。我们结合了元条形码分析、细菌培养和抗生素敏感性测试的结果,比较了与塑料水产养殖设备(包括两个聚酰胺网和一个聚酯衬垫)相关的细菌病原体组和抗性组,以及与大麻网和玻璃对照相关的细菌病原体组和抗性组。在水产养殖场的三个月孵育过程中,与其他固体基质相比,塑料既没有表现出更高水平的PHPB,也没有表现出更多的多种抗生素耐药性,但它们确实表现出特定的PHPB和ARB谱。在塑料PHPB群落中,弧菌科和葡萄球菌科的细菌数量(分别占PHPB reads的47%和22%)高于其他底物群落(分别占PHPB reads的4%和0.22%)。塑料相关的抗生素耐药谱显示对喹诺酮类药物的耐药性较高。这些结果表明,水产养殖设备可作为某些PHPB和ARB的蓄水池,设备组成和浸泡时间可作为控制相关卫生风险的杠杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信