W Liu, J Wang, Y Xue, J Li, Y Huang, S Zhu, L Wang, G Wang, W Chen, J Zhao
{"title":"The impact of Bifidobacterium longum CCFM1112 on chronic constipation: a randomised, double-blind, placebo-controlled study.","authors":"W Liu, J Wang, Y Xue, J Li, Y Huang, S Zhu, L Wang, G Wang, W Chen, J Zhao","doi":"10.1163/18762891-bja00085","DOIUrl":null,"url":null,"abstract":"<p><p>A mounting body of evidence suggests that probiotics may mitigate constipation through their favourable modulation of gut microbiota and its metabolic byproducts. The precise mechanisms underlying this effect remain to be fully elucidated. This randomised, double-blind, placebo-controlled study investigates the clinical efficacy of Bifidobacterium longum (B. longum) CCFM1112 in treating chronic constipation. Fifty-six volunteers diagnosed with chronic constipation according to the Rome IV criteria were randomly assigned to either the B. longum CCFM1112 group or a placebo group for a 4-week intervention. Key outcomes measured included weekly spontaneous bowel movements (SBM), stool consistency (Bristol Stool Form Scale [BSFS]), Patient Assessment of Constipation-Symptoms (PAC-SYM) questionnaire, and Quality of Life (PAC-QOL) questionnaire. In addition, gut microbiota was detected using metagenomic sequencing, and non targeted metabolomics was used to detect fecal and serum metabolites. Results demonstrated that B. longum CCFM1112 significantly reduced PAC-QOL scores and improved BSFS in patients with chronic constipation. Correlation analyses revealed that B. longum CCFM1112 significantly increased the abundance of the genera Blautia, Anaerobutyricum, and Streptococcus. Furthermore, the abundance of species, including Blautia massiliensis, Blautia sp. SC05B48, Anaerobutyricum hallii, and Streptococcus salivarius, was also significantly elevated. Furthermore, it elevated fecal levels of linoleic acid, gamma-aminobutyric acid (GABA), and arachidonic acid, while increasing L-glutamic acid and decreasing adenosine in serum. Our research findings provide evidence that the intake of B. longum CCFM1112 can alleviate constipation.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-17"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A mounting body of evidence suggests that probiotics may mitigate constipation through their favourable modulation of gut microbiota and its metabolic byproducts. The precise mechanisms underlying this effect remain to be fully elucidated. This randomised, double-blind, placebo-controlled study investigates the clinical efficacy of Bifidobacterium longum (B. longum) CCFM1112 in treating chronic constipation. Fifty-six volunteers diagnosed with chronic constipation according to the Rome IV criteria were randomly assigned to either the B. longum CCFM1112 group or a placebo group for a 4-week intervention. Key outcomes measured included weekly spontaneous bowel movements (SBM), stool consistency (Bristol Stool Form Scale [BSFS]), Patient Assessment of Constipation-Symptoms (PAC-SYM) questionnaire, and Quality of Life (PAC-QOL) questionnaire. In addition, gut microbiota was detected using metagenomic sequencing, and non targeted metabolomics was used to detect fecal and serum metabolites. Results demonstrated that B. longum CCFM1112 significantly reduced PAC-QOL scores and improved BSFS in patients with chronic constipation. Correlation analyses revealed that B. longum CCFM1112 significantly increased the abundance of the genera Blautia, Anaerobutyricum, and Streptococcus. Furthermore, the abundance of species, including Blautia massiliensis, Blautia sp. SC05B48, Anaerobutyricum hallii, and Streptococcus salivarius, was also significantly elevated. Furthermore, it elevated fecal levels of linoleic acid, gamma-aminobutyric acid (GABA), and arachidonic acid, while increasing L-glutamic acid and decreasing adenosine in serum. Our research findings provide evidence that the intake of B. longum CCFM1112 can alleviate constipation.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits