Young-Min Ju, Tae-Wan Kim, Seung-Hyun Lee, Ho-Jin Lee, Jinho Ahn, Hak-Sung Kim
{"title":"Advanced WBG power semiconductor packaging: nanomaterials and nanotechnologies for high-performance die attach paste.","authors":"Young-Min Ju, Tae-Wan Kim, Seung-Hyun Lee, Ho-Jin Lee, Jinho Ahn, Hak-Sung Kim","doi":"10.1186/s40580-025-00503-3","DOIUrl":null,"url":null,"abstract":"<p><p>Wide bandgap (WBG) power semiconductors have attracted significant attention from both academia and industry because they are superior to conventional silicon-based devices. In WBG power semiconductor packages, die attach materials play a crucial role in maximizing device performance and reliability. The die attach interfaces in WBG packages must withstand high operating temperatures (200-300 °C), fast switching frequencies, and great power densities while maintaining excellent thermomechanical reliability. Traditional die attach materials have significant limitations when applied to WBG devices, which has led to intensive research into nanomaterial-based alternatives during the past decade. This review summarizes current state-of-the-art nano-enabled die attach technologies: nanocomposite solders, nano-sintering approaches, and novel nanomaterial formulations specifically engineered for WBG power semiconductor packages. We examine the fundamental mechanisms behind the performance of nanomaterial die attach solutions and their ability to address the thermal management challenges of WBG devices. Furthermore, we examine the reliability of these materials in extreme operating conditions by evaluating their thermal cycling performance, shear strength stability, and microstructural evolution.</p>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":"38"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s40580-025-00503-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wide bandgap (WBG) power semiconductors have attracted significant attention from both academia and industry because they are superior to conventional silicon-based devices. In WBG power semiconductor packages, die attach materials play a crucial role in maximizing device performance and reliability. The die attach interfaces in WBG packages must withstand high operating temperatures (200-300 °C), fast switching frequencies, and great power densities while maintaining excellent thermomechanical reliability. Traditional die attach materials have significant limitations when applied to WBG devices, which has led to intensive research into nanomaterial-based alternatives during the past decade. This review summarizes current state-of-the-art nano-enabled die attach technologies: nanocomposite solders, nano-sintering approaches, and novel nanomaterial formulations specifically engineered for WBG power semiconductor packages. We examine the fundamental mechanisms behind the performance of nanomaterial die attach solutions and their ability to address the thermal management challenges of WBG devices. Furthermore, we examine the reliability of these materials in extreme operating conditions by evaluating their thermal cycling performance, shear strength stability, and microstructural evolution.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.