The crosstalk of m6A-modified RNA with DNA damage repair.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fei Qu, Yuan Liu
{"title":"The crosstalk of m<sup>6</sup>A-modified RNA with DNA damage repair.","authors":"Fei Qu, Yuan Liu","doi":"10.1016/j.tibs.2025.06.012","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most abundant epitranscriptomic mark on mRNA and plays crucial roles in gene expression, cell differentiation, stress responses, and cancer and neurodegenerative diseases. Recent studies have further revealed a new role of m<sup>6</sup>A-modified coding and noncoding RNAs in regulating DNA repair and modulating genome stability. In this review, we first discuss the roles of m<sup>6</sup>A modification in regulating RNA stability and splicing of DNA repair genes, as well as its roles in guiding DNA repair. We then discuss the crosstalk between m<sup>6</sup>A-modified RNA and DNA damage and repair, highlighting several outstanding questions.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.06.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark on mRNA and plays crucial roles in gene expression, cell differentiation, stress responses, and cancer and neurodegenerative diseases. Recent studies have further revealed a new role of m6A-modified coding and noncoding RNAs in regulating DNA repair and modulating genome stability. In this review, we first discuss the roles of m6A modification in regulating RNA stability and splicing of DNA repair genes, as well as its roles in guiding DNA repair. We then discuss the crosstalk between m6A-modified RNA and DNA damage and repair, highlighting several outstanding questions.

m6a修饰RNA与DNA损伤修复的串扰。
n6 -甲基腺苷(m6A)是mRNA上最丰富的表转录组标记,在基因表达、细胞分化、应激反应以及癌症和神经退行性疾病中发挥重要作用。近年来的研究进一步揭示了m6a修饰的编码和非编码rna在调控DNA修复和调控基因组稳定性中的新作用。在这篇综述中,我们首先讨论了m6A修饰在调节RNA稳定性和DNA修复基因剪接中的作用,以及它在指导DNA修复中的作用。然后,我们讨论了m6a修饰的RNA与DNA损伤和修复之间的串扰,突出了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信