Thomas G. White, Travis D. Griffin, Daniel Haden, Hae Ja Lee, Eric Galtier, Eric Cunningham, Dimitri Khaghani, Adrien Descamps, Lennart Wollenweber, Ben Armentrout, Carson Convery, Karen Appel, Luke B. Fletcher, Sebastian Goede, J. B. Hastings, Jeremy Iratcabal, Emma E. McBride, Jacob Molina, Giulio Monaco, Landon Morrison, Hunter Stramel, Sameen Yunus, Ulf Zastrau, Siegfried H. Glenzer, Gianluca Gregori, Dirk O. Gericke, Bob Nagler
{"title":"Superheating gold beyond the predicted entropy catastrophe threshold","authors":"Thomas G. White, Travis D. Griffin, Daniel Haden, Hae Ja Lee, Eric Galtier, Eric Cunningham, Dimitri Khaghani, Adrien Descamps, Lennart Wollenweber, Ben Armentrout, Carson Convery, Karen Appel, Luke B. Fletcher, Sebastian Goede, J. B. Hastings, Jeremy Iratcabal, Emma E. McBride, Jacob Molina, Giulio Monaco, Landon Morrison, Hunter Stramel, Sameen Yunus, Ulf Zastrau, Siegfried H. Glenzer, Gianluca Gregori, Dirk O. Gericke, Bob Nagler","doi":"10.1038/s41586-025-09253-y","DOIUrl":null,"url":null,"abstract":"In their landmark study1, Fecht and Johnson unveiled a phenomenon that they termed the ‘entropy catastrophe’, a critical point where the entropy of superheated crystals equates to that of their liquid counterparts. This point marks the uppermost stability boundary for solids at temperatures typically around three times their melting point. Despite the theoretical prediction of this ultimate stability threshold, its practical exploration has been prevented by numerous intermediate destabilizing events, colloquially known as a hierarchy of catastrophes2–5, which occur at far lower temperatures. Here we experimentally test this limit under ultrafast heating conditions, directly tracking the lattice temperature by using high-resolution inelastic X-ray scattering. Our gold samples are heated to temperatures over 14 times their melting point while retaining their crystalline structure, far surpassing the predicted threshold and suggesting a substantially higher or potentially no limit for superheating. We point to the inability of our samples to expand on these very short timescales as an important difference from previous estimates. These observations provide insights into the dynamics of melting under extreme conditions. Gold samples can be heated to more than 14 times their melting point while retaining their crystalline structure, far surpassing the predicted entropy catastrophe threshold and suggesting a substantially higher or potentially no limit for superheating.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8073","pages":"950-954"},"PeriodicalIF":48.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-09253-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09253-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In their landmark study1, Fecht and Johnson unveiled a phenomenon that they termed the ‘entropy catastrophe’, a critical point where the entropy of superheated crystals equates to that of their liquid counterparts. This point marks the uppermost stability boundary for solids at temperatures typically around three times their melting point. Despite the theoretical prediction of this ultimate stability threshold, its practical exploration has been prevented by numerous intermediate destabilizing events, colloquially known as a hierarchy of catastrophes2–5, which occur at far lower temperatures. Here we experimentally test this limit under ultrafast heating conditions, directly tracking the lattice temperature by using high-resolution inelastic X-ray scattering. Our gold samples are heated to temperatures over 14 times their melting point while retaining their crystalline structure, far surpassing the predicted threshold and suggesting a substantially higher or potentially no limit for superheating. We point to the inability of our samples to expand on these very short timescales as an important difference from previous estimates. These observations provide insights into the dynamics of melting under extreme conditions. Gold samples can be heated to more than 14 times their melting point while retaining their crystalline structure, far surpassing the predicted entropy catastrophe threshold and suggesting a substantially higher or potentially no limit for superheating.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.