Back Cover Image, Volume 7, Number 7, July 2025

IF 24.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2025-07-24 DOI:10.1002/cey2.70074
Unbeom Baeck, Min-Cheol Kim, Duong Nguyen Nguyen, Jaekyum Kim, Jaehyoung Lim, Yujin Chae, Namsoo Shin, Heechae Choi, Joon Young Kim, Chan-Hwa Chung, Woo-Seok Choe, Ho Seok Park, Uk Sim, Jung Kyu Kim
{"title":"Back Cover Image, Volume 7, Number 7, July 2025","authors":"Unbeom Baeck,&nbsp;Min-Cheol Kim,&nbsp;Duong Nguyen Nguyen,&nbsp;Jaekyum Kim,&nbsp;Jaehyoung Lim,&nbsp;Yujin Chae,&nbsp;Namsoo Shin,&nbsp;Heechae Choi,&nbsp;Joon Young Kim,&nbsp;Chan-Hwa Chung,&nbsp;Woo-Seok Choe,&nbsp;Ho Seok Park,&nbsp;Uk Sim,&nbsp;Jung Kyu Kim","doi":"10.1002/cey2.70074","DOIUrl":null,"url":null,"abstract":"<p><b><i>Back cover image</i></b>: The rational design of transition metal incorporated electrocatalyst for hydrogen evolution reaction is an effective way to produce economical hydrogen. However, the practical application of data-driven methodology is limited due to the complexity of electrochemical systems. In article number cey2.70006, Kim and Sim et al. present the machine learning based facile strategy to optimize the catalyst and experimental conditions. The trained model accurately predicts experimental variables, which are validated by proton exchange membrane-based water electrolysis system. This work provides insight into the simplified approach for the design optimization of machine learning-assisted catalysts and systems.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 7","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Back cover image: The rational design of transition metal incorporated electrocatalyst for hydrogen evolution reaction is an effective way to produce economical hydrogen. However, the practical application of data-driven methodology is limited due to the complexity of electrochemical systems. In article number cey2.70006, Kim and Sim et al. present the machine learning based facile strategy to optimize the catalyst and experimental conditions. The trained model accurately predicts experimental variables, which are validated by proton exchange membrane-based water electrolysis system. This work provides insight into the simplified approach for the design optimization of machine learning-assisted catalysts and systems.

Abstract Image

封底图片,第七卷,第七期,2025年7月
封底图:合理设计过渡金属配以析氢电催化剂是经济生产氢气的有效途径。然而,由于电化学系统的复杂性,数据驱动方法的实际应用受到限制。在文章编号cey2.70006中,Kim和Sim等人提出了基于机器学习的易化策略来优化催化剂和实验条件。该模型准确地预测了实验变量,并通过质子交换膜电解系统进行了验证。这项工作为机器学习辅助催化剂和系统的设计优化提供了简化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信