Global Scale Intercomparison of Critical Soil Moisture Estimation Pathways and Their Influence on Hydrological Regime Dynamics and Land-Atmosphere Interactions
{"title":"Global Scale Intercomparison of Critical Soil Moisture Estimation Pathways and Their Influence on Hydrological Regime Dynamics and Land-Atmosphere Interactions","authors":"Sandipan Paul, Andrew F. Feldman, L. Karthikeyan","doi":"10.1029/2025EF006194","DOIUrl":null,"url":null,"abstract":"<p>Hydrological regimes are fundamental for analyzing land-atmosphere (LA) interactions. These regimes are delineated into water- and energy-limited regime by estimating their critical soil moisture <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msup>\n <mi>θ</mi>\n <mo>∗</mo>\n </msup>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\theta }^{\\ast }\\right)$</annotation>\n </semantics></math> threshold using the evaporative fraction <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(EF)$</annotation>\n </semantics></math>, temporal rate of soil moisture <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $(\\theta )$</annotation>\n </semantics></math> drying <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(d\\theta /dt)$</annotation>\n </semantics></math>, and diurnal soil temperature range <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left(d{T}_{\\text{soil}}\\right)$</annotation>\n </semantics></math>. However, the impact of inconsistencies stemming from <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>θ</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${\\theta }^{\\ast }$</annotation>\n </semantics></math> on our understanding of LA feedbacks has not yet been examined. The present work, for the first time, conducts a comprehensive intercomparison of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>θ</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${\\theta }^{\\ast }$</annotation>\n </semantics></math>, regime properties (persistence, chances of transitioning, and temporal similarity), and LA coupling strength estimated using covariability of <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <annotation> $EF$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $d\\theta /dt$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <annotation> $d{T}_{\\text{soil}}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <annotation> $\\theta $</annotation>\n </semantics></math>. We find that <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{d{T}_{\\text{soil}}}^{\\ast }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{EF}^{\\ast }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{d\\theta /dt}^{\\ast }$</annotation>\n </semantics></math> are in close agreement in semi-arid and sub-humid climatic regions characterized by herbaceous vegetation. <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <annotation> $d{T}_{\\text{soil}}$</annotation>\n </semantics></math> results in higher persistence of water-limited regime and less frequent regime transitioning compared to <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <annotation> $EF$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $d\\theta /dt$</annotation>\n </semantics></math>. However, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{d{T}_{\\text{soil}}}^{\\ast }$</annotation>\n </semantics></math> identifies similar regimes for >80%of the time in 84% of regime transitioning regions. The tipping potential of regimes identified by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{d{T}_{\\text{soil}}}^{\\ast }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{EF}^{\\ast }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>θ</mi>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\theta }_{d\\theta /dt}^{\\ast }$</annotation>\n </semantics></math> is lowest during the dry seasons, which increases during the summer. <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <annotation> $d{T}_{\\text{soil}}$</annotation>\n </semantics></math> identifies stronger LA coupling over western USA, south-central Australia and peninsular India, compared to <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <annotation> $EF$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $d\\theta /dt$</annotation>\n </semantics></math>. Central Asian grasslands are identified to have mild LA coupling using <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <annotation> $d{T}_{\\text{soil}}$</annotation>\n </semantics></math>, while <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <annotation> $EF$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $d\\theta /dt$</annotation>\n </semantics></math> do not indicate notable coupling. Overall, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msub>\n <mi>T</mi>\n <mtext>soil</mtext>\n </msub>\n </mrow>\n <annotation> $d{T}_{\\text{soil}}$</annotation>\n </semantics></math> represents a viable proxy for <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>F</mi>\n </mrow>\n <annotation> $EF$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mi>θ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $d\\theta /dt$</annotation>\n </semantics></math> toward enhancing the understanding of local LA coupling with potential applications in assessing ecosystem responses, evolution of dry extreme events, and land surface modeling.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 7","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025EF006194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025EF006194","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrological regimes are fundamental for analyzing land-atmosphere (LA) interactions. These regimes are delineated into water- and energy-limited regime by estimating their critical soil moisture threshold using the evaporative fraction , temporal rate of soil moisture drying , and diurnal soil temperature range . However, the impact of inconsistencies stemming from on our understanding of LA feedbacks has not yet been examined. The present work, for the first time, conducts a comprehensive intercomparison of , regime properties (persistence, chances of transitioning, and temporal similarity), and LA coupling strength estimated using covariability of , , and with . We find that , and are in close agreement in semi-arid and sub-humid climatic regions characterized by herbaceous vegetation. results in higher persistence of water-limited regime and less frequent regime transitioning compared to and . However, identifies similar regimes for >80%of the time in 84% of regime transitioning regions. The tipping potential of regimes identified by , and is lowest during the dry seasons, which increases during the summer. identifies stronger LA coupling over western USA, south-central Australia and peninsular India, compared to and . Central Asian grasslands are identified to have mild LA coupling using , while and do not indicate notable coupling. Overall, represents a viable proxy for and toward enhancing the understanding of local LA coupling with potential applications in assessing ecosystem responses, evolution of dry extreme events, and land surface modeling.
水文状况是分析陆地-大气相互作用的基础。利用蒸发分数(E)估算其临界土壤水分θ∗$\left({\theta }^{\ast }\right)$阈值,将这些状态划分为水和能量限制状态F) $(EF)$;土壤水分时间速率(θ) $(\theta )$干燥(d θ / d t)$(d\theta /dt)$,土壤日温度差d T土壤$\left(d{T}_{\text{soil}}\right)$。然而,由θ * ${\theta }^{\ast }$引起的不一致性对我们对LA反馈的理解的影响尚未得到检验。本研究首次对θ∗${\theta }^{\ast }$、状态性质(持久性、跃迁机会和时间相似性)、和LA耦合强度利用E F $EF$, d θ / d t $d\theta /dt$的协变性估计,d T土壤$d{T}_{\text{soil}}$与θ $\theta $。我们得到θ d T土* ${\theta }_{d{T}_{\text{soil}}}^{\ast }$,θ E F * ${\theta }_{EF}^{\ast }$和θ d θ /D t * ${\theta }_{d\theta /dt}^{\ast }$在以草本植物为特征的半干旱和半湿润气候区是非常一致的。与E F $EF$和d θ相比,d T土壤$d{T}_{\text{soil}}$具有更高的限水状态持久性和更少的状态转换频率/ d t $d\theta /dt$。 然而,θ d T soil∗${\theta}_{d{T}_{\text{soil}}}^{\ast}$在84%的政权转换中有80%的时间识别出相似的政权地区。θ d T soil∗${\theta}_{d{T}_{\text{soil}}}^{\ast}$θ EF * ${\theta}_{EF}^{\ast}$和θ d θ /D t∗${\theta}_{D \theta /dt}^{\ast}$在旱季最低,在夏季增加。d T soil $d{T}_{\text{soil}}$确定在美国西部、澳大利亚中南部和印度半岛有更强的LA耦合;F$ EF$和d θ /dt$ d\ /dt$。利用d T soil $d{T}_{\text{soil}}$确定中亚草原具有轻度LA耦合;而EF$ EF$和d θ /dt$ d\ θ /dt$没有显著的耦合关系。总的来说,d T soil $d{T}_{\text{soil}}$表示EF$ EF$和d θ /的可行代理dt$ d\theta /dt$旨在增强对局部LA耦合的理解,并在评估生态系统响应、干旱极端事件演变和陆地表面模拟方面具有潜在的应用价值。
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.