Achieving Accurate Modulated Signal Recognition: A Hybrid Neural Network Approach With Data Augmentation

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qi Zheng, Guangxiao Song, Kaiyin Yu, Fang Zhou, Dongping Zhang, Daying Quan
{"title":"Achieving Accurate Modulated Signal Recognition: A Hybrid Neural Network Approach With Data Augmentation","authors":"Qi Zheng,&nbsp;Guangxiao Song,&nbsp;Kaiyin Yu,&nbsp;Fang Zhou,&nbsp;Dongping Zhang,&nbsp;Daying Quan","doi":"10.1049/rsn2.70058","DOIUrl":null,"url":null,"abstract":"<p>Accurate classification of radar signals remains a key challenge in automatic modulation classification (AMC), particularly in scenarios with limited training data and complex signal variations. To address this, we propose a novel hybrid neural architecture and incorporate a magnitude rescaling method for data augmentation. Specifically, our hybrid neural structure integrates a bidirectional long short-term memory (Bi-LSTM) network, a dynamic feature extraction module, and a transformer encoder in a cascaded structure. It effectively processes one-dimensional signals enhanced via the proposed random magnitude rescaling method. Experimental results demonstrate our approach achieves a competitive classification accuracy of 94.18% on the RML2016a data set and exhibits strong performance on a hardware-in-the-loop simulation dataset. The implementation of our radar signal modulation classification method, along with the related datasets, is available at: https://github.com/stu-cjlu-sp/rsrc-for-pub/tree/main/ASEFEAMC.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70058","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of radar signals remains a key challenge in automatic modulation classification (AMC), particularly in scenarios with limited training data and complex signal variations. To address this, we propose a novel hybrid neural architecture and incorporate a magnitude rescaling method for data augmentation. Specifically, our hybrid neural structure integrates a bidirectional long short-term memory (Bi-LSTM) network, a dynamic feature extraction module, and a transformer encoder in a cascaded structure. It effectively processes one-dimensional signals enhanced via the proposed random magnitude rescaling method. Experimental results demonstrate our approach achieves a competitive classification accuracy of 94.18% on the RML2016a data set and exhibits strong performance on a hardware-in-the-loop simulation dataset. The implementation of our radar signal modulation classification method, along with the related datasets, is available at: https://github.com/stu-cjlu-sp/rsrc-for-pub/tree/main/ASEFEAMC.

Abstract Image

实现精确的调制信号识别:数据增强的混合神经网络方法
雷达信号的准确分类仍然是自动调制分类(AMC)的关键挑战,特别是在训练数据有限和信号变化复杂的情况下。为了解决这个问题,我们提出了一种新的混合神经结构,并结合了一种用于数据增强的幅度重新缩放方法。具体来说,我们的混合神经结构在级联结构中集成了双向长短期记忆(Bi-LSTM)网络,动态特征提取模块和变压器编码器。该算法有效地处理了随机幅度重标方法增强的一维信号。实验结果表明,我们的方法在RML2016a数据集上实现了94.18%的竞争性分类准确率,并且在硬件在环模拟数据集上表现出了较强的性能。我们的雷达信号调制分类方法的实现,以及相关的数据集,可在:https://github.com/stu-cjlu-sp/rsrc-for-pub/tree/main/ASEFEAMC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信