Rong Yang, Chao Yang, Bo Xu, Zhiyuan Kuang, Luhang Xu, Yu Chen, Fengwei Wang, Xuan Gao, Dongmin Qian, Jin Chang, Xinhui Lu, Renzhi Li, Wei Huang, Jianpu Wang
{"title":"The Roles of Organic Spacer Molecular Structures in Modulating Crystallization Toward High-Performance Quasi-2D Perovskite Solar Cells","authors":"Rong Yang, Chao Yang, Bo Xu, Zhiyuan Kuang, Luhang Xu, Yu Chen, Fengwei Wang, Xuan Gao, Dongmin Qian, Jin Chang, Xinhui Lu, Renzhi Li, Wei Huang, Jianpu Wang","doi":"10.1002/solr.202500349","DOIUrl":null,"url":null,"abstract":"<p>Organic spacers play a crucial role in governing the optoelectronic properties of quasi-2D perovskites; however, a limited understanding of their structure-performance relationships hampers progress in enhancing device efficiency. Here, we systematically explore how the chlorine substituent position on commonly used benzylamine organic spacer affects quasi-2D perovskite solar cell performance. Combining experimental and theoretical calculations results, we demonstrate that the structure of the organic spacer influences both the formation energy of low-dimensional perovskites and the interactions between the organic spacer and the 3D perovskite framework. Our findings reveal that the introduction of a meta-chlorine substitution into benzylamine results in a higher formation energy for 2D perovskites and improved interaction with 3D perovskites, leading to the formation of a well-structured film with reduced defects. Correspondingly, the optimized meta-chlorine benzylamine device achieves a peak efficiency exceeding 20% and exhibits significantly improved long-term light, heat and humidity stability.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 14","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500349","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Organic spacers play a crucial role in governing the optoelectronic properties of quasi-2D perovskites; however, a limited understanding of their structure-performance relationships hampers progress in enhancing device efficiency. Here, we systematically explore how the chlorine substituent position on commonly used benzylamine organic spacer affects quasi-2D perovskite solar cell performance. Combining experimental and theoretical calculations results, we demonstrate that the structure of the organic spacer influences both the formation energy of low-dimensional perovskites and the interactions between the organic spacer and the 3D perovskite framework. Our findings reveal that the introduction of a meta-chlorine substitution into benzylamine results in a higher formation energy for 2D perovskites and improved interaction with 3D perovskites, leading to the formation of a well-structured film with reduced defects. Correspondingly, the optimized meta-chlorine benzylamine device achieves a peak efficiency exceeding 20% and exhibits significantly improved long-term light, heat and humidity stability.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.