Giulio Koch, Daniel Augusto Machado de Alencar, Cullen Chosy, Amanda Generosi, Flavia Righi Riva, Samyuktha Noola, Farshad Jafarzadeh, Kyle Frohna, Matteo Bonomo, Pierluigi Quagliotto, Paolo Rech, Carlo Cazzaniga, Marco Ottavi, Francesca De Rossi, Barbara Paci, Samuel D. Stranks, Claudia Barolo, Francesca Brunetti
{"title":"Neutron Resilience of Flexible Perovskite Solar Cells Using PTAA-Derived Hole Transport Layers","authors":"Giulio Koch, Daniel Augusto Machado de Alencar, Cullen Chosy, Amanda Generosi, Flavia Righi Riva, Samyuktha Noola, Farshad Jafarzadeh, Kyle Frohna, Matteo Bonomo, Pierluigi Quagliotto, Paolo Rech, Carlo Cazzaniga, Marco Ottavi, Francesca De Rossi, Barbara Paci, Samuel D. Stranks, Claudia Barolo, Francesca Brunetti","doi":"10.1002/solr.202500126","DOIUrl":null,"url":null,"abstract":"<p>Flexible perovskite solar cells hold promise of being an enabling technology for space missions: by reducing the encumbrance and weight of the payload's power system, launch costs can be minimized. The increased interest, however, must be accompanied by thorough testing under a broad range of space-related sources of degradation and investigation of their effects on the layer stack. In this work, the resilience against atmospheric neutron radiation (<800 MeV) of flexible devices is studied, using two different hole transporting materials: a commercial PTAA and a PTAA-based in-house synthesized polymer. After 5 10<sup>9</sup> particles/cm<sup>2</sup> irradiation, 380 times higher than the yearly fast neutron fluence in low Earth orbit, the devices show good stability, with efficiency losses below 20%. Further investigation by light intensity-dependent JV scans, hyperspectral photoluminescence microscopy, X-ray diffraction, X-ray reflectivity, and atomic force microscopy reveals that the neutron radiation mainly affects the perovskite/hole transport layer interface, to a different extent depending on the material. This work confirms that accelerated stress testing is an important tool to determine the feasibility of this technology for space applications and provides insights on the damages caused by atmospheric neutrons which will help inform future decisions for the fabrication of space-resilient flexible perovskite solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 14","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500126","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible perovskite solar cells hold promise of being an enabling technology for space missions: by reducing the encumbrance and weight of the payload's power system, launch costs can be minimized. The increased interest, however, must be accompanied by thorough testing under a broad range of space-related sources of degradation and investigation of their effects on the layer stack. In this work, the resilience against atmospheric neutron radiation (<800 MeV) of flexible devices is studied, using two different hole transporting materials: a commercial PTAA and a PTAA-based in-house synthesized polymer. After 5 109 particles/cm2 irradiation, 380 times higher than the yearly fast neutron fluence in low Earth orbit, the devices show good stability, with efficiency losses below 20%. Further investigation by light intensity-dependent JV scans, hyperspectral photoluminescence microscopy, X-ray diffraction, X-ray reflectivity, and atomic force microscopy reveals that the neutron radiation mainly affects the perovskite/hole transport layer interface, to a different extent depending on the material. This work confirms that accelerated stress testing is an important tool to determine the feasibility of this technology for space applications and provides insights on the damages caused by atmospheric neutrons which will help inform future decisions for the fabrication of space-resilient flexible perovskite solar cells.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.