Self-Assembled Superacid Monolayers on c-Si Provide Exceptional Surface Passivation and Low Contact Resistivity

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-06-23 DOI:10.1002/solr.202500290
Milad Ghasemi, Cem Maden, Gence Bektaş, Konstantin Tsoi, Görkem Günbaş, Hande Ustunel, Selçuk Yerci
{"title":"Self-Assembled Superacid Monolayers on c-Si Provide Exceptional Surface Passivation and Low Contact Resistivity","authors":"Milad Ghasemi,&nbsp;Cem Maden,&nbsp;Gence Bektaş,&nbsp;Konstantin Tsoi,&nbsp;Görkem Günbaş,&nbsp;Hande Ustunel,&nbsp;Selçuk Yerci","doi":"10.1002/solr.202500290","DOIUrl":null,"url":null,"abstract":"<p>Minimizing surface recombination is crucial for enhancing silicon solar cell passivation. Conventional dielectric materials require vacuum deposition and high-temperature annealing, increasing complexity and cost. This study explores Nonafluorobutane sulfonic acid (C<sub>4</sub>HF<sub>9</sub>O<sub>3</sub>S), a superacid, as a passivation layer for silicon solar cells. Unlike traditional dielectrics, it eliminates the need for vacuum processing or high-temperature annealing while offering excellent passivation. Results show that the superacid forms a self-assembled monolayer on silicon, improving passivation and enabling efficient charge extraction. N-type silicon coated with the superacid achieves an effective lifetime exceeding 8.5 ms, and when combined with Al, it forms an interface with a contact resistivity as low as 5.75 mΩ.cm<sup>2</sup>. Characterization and density functional theory (DFT) calculations confirm both chemical and field-effect passivation mechanisms, validating the monolayer's superior performance. When integrated into a full solar cell, the Nona layer enhances device performance, yielding a 3.05% absolute efficiency gain compared to the reference cell without Nona. This study introduces a cost-effective alternative to conventional dielectrics, simplifying processing while reducing production costs and CO<sub>2</sub> emissions, paving the way for sustainable, high-efficiency silicon solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 14","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500290","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Minimizing surface recombination is crucial for enhancing silicon solar cell passivation. Conventional dielectric materials require vacuum deposition and high-temperature annealing, increasing complexity and cost. This study explores Nonafluorobutane sulfonic acid (C4HF9O3S), a superacid, as a passivation layer for silicon solar cells. Unlike traditional dielectrics, it eliminates the need for vacuum processing or high-temperature annealing while offering excellent passivation. Results show that the superacid forms a self-assembled monolayer on silicon, improving passivation and enabling efficient charge extraction. N-type silicon coated with the superacid achieves an effective lifetime exceeding 8.5 ms, and when combined with Al, it forms an interface with a contact resistivity as low as 5.75 mΩ.cm2. Characterization and density functional theory (DFT) calculations confirm both chemical and field-effect passivation mechanisms, validating the monolayer's superior performance. When integrated into a full solar cell, the Nona layer enhances device performance, yielding a 3.05% absolute efficiency gain compared to the reference cell without Nona. This study introduces a cost-effective alternative to conventional dielectrics, simplifying processing while reducing production costs and CO2 emissions, paving the way for sustainable, high-efficiency silicon solar cells.

Abstract Image

c-Si上的自组装超强酸单层提供了优异的表面钝化和低接触电阻率
减少表面复合是提高硅太阳电池钝化的关键。传统的介电材料需要真空沉积和高温退火,增加了复杂性和成本。本研究探讨了非氟丁烷磺酸(C4HF9O3S)作为硅太阳能电池钝化层的超强酸。与传统的电介质不同,它不需要真空处理或高温退火,同时提供出色的钝化。结果表明,超强酸在硅表面形成自组装单层,改善了钝化效果,实现了高效的电荷提取。涂覆超酸的n型硅的有效寿命超过8.5 ms,与Al结合形成接触电阻率低至5.75 mΩ.cm2的界面。表征和密度泛函理论(DFT)计算证实了化学钝化机制和场效应钝化机制,验证了单层膜的优越性能。当集成到一个完整的太阳能电池时,Nona层提高了器件性能,与没有Nona的参考电池相比,产生了3.05%的绝对效率增益。这项研究介绍了一种具有成本效益的传统电介质替代品,简化了加工过程,同时降低了生产成本和二氧化碳排放,为可持续、高效的硅太阳能电池铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信