Per-Row Activation Counting on Real Hardware: Demystifying Performance Overheads

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jumin Kim;Seungmin Baek;Minbok Wi;Hwayong Nam;Michael Jaemin Kim;Sukhan Lee;Kyomin Sohn;Jung Ho Ahn
{"title":"Per-Row Activation Counting on Real Hardware: Demystifying Performance Overheads","authors":"Jumin Kim;Seungmin Baek;Minbok Wi;Hwayong Nam;Michael Jaemin Kim;Sukhan Lee;Kyomin Sohn;Jung Ho Ahn","doi":"10.1109/LCA.2025.3587293","DOIUrl":null,"url":null,"abstract":"Per-Row Activation Counting (PRAC), a DRAM read disturbance mitigation method, modifies key DRAM timing parameters, reportedly causing significant performance overheads in simulator-based studies. However, given known discrepancies between simulators and real hardware, real-machine experiments are vital for accurate PRAC performance estimation. We present the first real-machine performance analysis of PRAC. After verifying timing modifications on the latest CPUs using microbenchmarks, our analysis shows that PRAC’s average and maximum overheads are just 1.06% and 3.28% for the SPEC CPU2017 workloads—up to 9.15× lower than simulator-based reports. Further, we show that the close page policy minimizes this overhead by effectively hiding the elongated DRAM row precharge operations due to PRAC from the critical path.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"217-220"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11074718/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Per-Row Activation Counting (PRAC), a DRAM read disturbance mitigation method, modifies key DRAM timing parameters, reportedly causing significant performance overheads in simulator-based studies. However, given known discrepancies between simulators and real hardware, real-machine experiments are vital for accurate PRAC performance estimation. We present the first real-machine performance analysis of PRAC. After verifying timing modifications on the latest CPUs using microbenchmarks, our analysis shows that PRAC’s average and maximum overheads are just 1.06% and 3.28% for the SPEC CPU2017 workloads—up to 9.15× lower than simulator-based reports. Further, we show that the close page policy minimizes this overhead by effectively hiding the elongated DRAM row precharge operations due to PRAC from the critical path.
真实硬件上的每行激活计数:揭开性能开销的神秘面纱
逐行激活计数(PRAC)是一种缓解DRAM读取干扰的方法,它修改了关键的DRAM时序参数,据报道,在基于模拟器的研究中,这会导致显著的性能开销。然而,鉴于模拟器和真实硬件之间的已知差异,真实机实验对于准确估计PRAC性能至关重要。我们首次对PRAC进行了实机性能分析。在使用微基准测试验证最新cpu上的时序修改后,我们的分析表明,在SPEC CPU2017工作负载下,PRAC的平均开销和最大开销仅为1.06%和3.28%,比基于模拟器的报告低9.15倍。此外,我们还表明,关闭页策略通过有效地隐藏由于关键路径上的PRAC而延长的DRAM行预充值操作,从而最大限度地减少了这种开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信