Unraveling progressive stages of formation and examining relative roles of proximity to fault, mechanical stratigraphy on fracturing in the leading-edge of thrust sheets: Insights from Ramgarh thrust, Darjeeling Himalaya
{"title":"Unraveling progressive stages of formation and examining relative roles of proximity to fault, mechanical stratigraphy on fracturing in the leading-edge of thrust sheets: Insights from Ramgarh thrust, Darjeeling Himalaya","authors":"J.K. Ammu, Kathakali Bhattacharyya","doi":"10.1016/j.jsg.2025.105507","DOIUrl":null,"url":null,"abstract":"<div><div>We decipher the progressive stages of fracture formation and examine the competing effects of proximity to a thrust, lithology, and bed thickness on fracture abundance, orientation, mode, and length. We address this study in the interfoliated quartzite-phyllite sequence of the leading-edge (∼3.4 km) of the Ramgarh thrust (RT) sheet, the roof thrust of the lower Lesser Himalayan duplex in the Darjeeling Himalaya. Only ∼30 % of the total studied fractures (n = 884) preserve slickenlines and plumose structures. Due to favorable orientations relative to the vertical outcrop bearing, small displacement faults (shear fractures) (n = 236; ∼27 % of total fractures) with slickenlines are better exposed than opening-mode (n = 32; ∼4 %) with plumose structures. Further structural analyses reveal coexisting shear (∼59 %) and opening-mode (∼41 %) fractures. Through crosscutting, fold test, and intensity distribution, we establish fracturing initiated with low-angle, shear fractures during early layer parallel shortening. High-angle, shear, and opening-mode fractures formed post-folding. Fracture density fluctuates with perpendicular distance from the footwall contact due to variation in lithology and bed thickness. Fracture density most strongly depends on lithology (quartzite<sub>fractures</sub> > phyllite<sub>fractures</sub>), followed by bed thickness (thin beds<sub>fractures</sub> > thick beds<sub>fractures</sub>) and distance from the RT. Fracture mode and orientation, with respect to bedding, are similar across lithologies, only intensity differs. High-angle and Riedel shear fractures are localized proximal to the RT. Shear vs opening-mode proportions remain unchanged with increasing distance from the RT. Litho-boundaries and early-formed fractures constrain fracture lengths (n<sub>traces</sub> = 10,758), irrespective of their mode and orientation. Fracture networks show more evolved length distributions close to the RT.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"200 ","pages":"Article 105507"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814125001828","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We decipher the progressive stages of fracture formation and examine the competing effects of proximity to a thrust, lithology, and bed thickness on fracture abundance, orientation, mode, and length. We address this study in the interfoliated quartzite-phyllite sequence of the leading-edge (∼3.4 km) of the Ramgarh thrust (RT) sheet, the roof thrust of the lower Lesser Himalayan duplex in the Darjeeling Himalaya. Only ∼30 % of the total studied fractures (n = 884) preserve slickenlines and plumose structures. Due to favorable orientations relative to the vertical outcrop bearing, small displacement faults (shear fractures) (n = 236; ∼27 % of total fractures) with slickenlines are better exposed than opening-mode (n = 32; ∼4 %) with plumose structures. Further structural analyses reveal coexisting shear (∼59 %) and opening-mode (∼41 %) fractures. Through crosscutting, fold test, and intensity distribution, we establish fracturing initiated with low-angle, shear fractures during early layer parallel shortening. High-angle, shear, and opening-mode fractures formed post-folding. Fracture density fluctuates with perpendicular distance from the footwall contact due to variation in lithology and bed thickness. Fracture density most strongly depends on lithology (quartzitefractures > phyllitefractures), followed by bed thickness (thin bedsfractures > thick bedsfractures) and distance from the RT. Fracture mode and orientation, with respect to bedding, are similar across lithologies, only intensity differs. High-angle and Riedel shear fractures are localized proximal to the RT. Shear vs opening-mode proportions remain unchanged with increasing distance from the RT. Litho-boundaries and early-formed fractures constrain fracture lengths (ntraces = 10,758), irrespective of their mode and orientation. Fracture networks show more evolved length distributions close to the RT.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.