Alexandre Trubert-Paneli , Jonathan A. Williams , James F.C. Windmill , Leire Iturriaga , Eonan W. Pringle , Theodora Rogkoti , Siyuan Dong , Amaia Cipitria , Aline F. Miller , Cristina Gonzalez-Garcia , Alberto Saiani , Manuel Salmeron-Sanchez
{"title":"Tenascin-c functionalised self-assembling peptide hydrogels for critical-sized bone defect reconstruction","authors":"Alexandre Trubert-Paneli , Jonathan A. Williams , James F.C. Windmill , Leire Iturriaga , Eonan W. Pringle , Theodora Rogkoti , Siyuan Dong , Amaia Cipitria , Aline F. Miller , Cristina Gonzalez-Garcia , Alberto Saiani , Manuel Salmeron-Sanchez","doi":"10.1016/j.biomaterials.2025.123553","DOIUrl":null,"url":null,"abstract":"<div><div>Critical-sized bone defects cannot heal spontaneously and receive poor clinical prognosis due to limitations in modern treatment strategies. Next-generation therapies are applying biomaterials incorporating BMP-2 to effectively promote and support bone regeneration, but adverse effects are linked to uncontrolled BMP-2 egress from the biomaterial. Implementing extracellular matrix proteins to biomaterials is a favourable approach to alleviate these drawbacks, and self-assembling peptide hydrogels are rapidly emerging as modulable and versatile biomaterials. Here, we describe the creation of a tenascin-<em>c</em>-functionalised peptide hydrogel designed to regenerate critical-sized bone defects. A recombinant fragment of tenascin-c spanning from the 3<sup>rd</sup> to 5<sup>th</sup> fibronectin-like domains is integrated into the fibre network. We demonstrate that this nascent construct effectively retains BMP-2 to differentiate mesenchymal stem cells into mature osteoblasts and achieves complete unionisation of murine critical-sized bone defects under low BMP-2 dose. All in all, we demonstrate tenascin-c as a suitable candidate to functionalise biomaterials intended for bone engineering applications and the promising potential of self-assembling peptide hydrogels in treating critical-sized bone defects.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"325 ","pages":"Article 123553"},"PeriodicalIF":12.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225004727","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Critical-sized bone defects cannot heal spontaneously and receive poor clinical prognosis due to limitations in modern treatment strategies. Next-generation therapies are applying biomaterials incorporating BMP-2 to effectively promote and support bone regeneration, but adverse effects are linked to uncontrolled BMP-2 egress from the biomaterial. Implementing extracellular matrix proteins to biomaterials is a favourable approach to alleviate these drawbacks, and self-assembling peptide hydrogels are rapidly emerging as modulable and versatile biomaterials. Here, we describe the creation of a tenascin-c-functionalised peptide hydrogel designed to regenerate critical-sized bone defects. A recombinant fragment of tenascin-c spanning from the 3rd to 5th fibronectin-like domains is integrated into the fibre network. We demonstrate that this nascent construct effectively retains BMP-2 to differentiate mesenchymal stem cells into mature osteoblasts and achieves complete unionisation of murine critical-sized bone defects under low BMP-2 dose. All in all, we demonstrate tenascin-c as a suitable candidate to functionalise biomaterials intended for bone engineering applications and the promising potential of self-assembling peptide hydrogels in treating critical-sized bone defects.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.