Unconditionally energy gradient stable numerical scheme for Cahn–Hilliard equation with high-order degenerate mobility

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Gyeonggyu Lee , Seunggyu Lee
{"title":"Unconditionally energy gradient stable numerical scheme for Cahn–Hilliard equation with high-order degenerate mobility","authors":"Gyeonggyu Lee ,&nbsp;Seunggyu Lee","doi":"10.1016/j.camwa.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we consider the Cahn–Hilliard equation with high-order degenerate mobility, where the mobility function depends on the concentration field. As a Wasserstein gradient flow of the Ginzburg–Landau free energy, the system satisfies both mass preservation and energy dissipation requirements. A novel numerical scheme based on a linear stabilized splitting method proposed satisfying mass conservation, unique solvability, and unconditional energy gradient stability while drawing connections with the porous medium equation. Extensive numerical experiments validate the theoretical findings, including mass conservation, energy stability, and accuracy, in both space and time.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 263-287"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we consider the Cahn–Hilliard equation with high-order degenerate mobility, where the mobility function depends on the concentration field. As a Wasserstein gradient flow of the Ginzburg–Landau free energy, the system satisfies both mass preservation and energy dissipation requirements. A novel numerical scheme based on a linear stabilized splitting method proposed satisfying mass conservation, unique solvability, and unconditional energy gradient stability while drawing connections with the porous medium equation. Extensive numerical experiments validate the theoretical findings, including mass conservation, energy stability, and accuracy, in both space and time.
具有高阶退化迁移率的Cahn-Hilliard方程的无条件能量梯度稳定数值格式
本研究考虑具有高阶简并迁移率的Cahn-Hilliard方程,其中迁移率函数依赖于浓度场。该体系作为一种金兹堡-朗道自由能的瓦瑟斯坦梯度流,既满足质量保持要求,又满足能量耗散要求。在与多孔介质方程建立联系的同时,提出了一种新的基于线性稳定分裂法的数值格式,满足质量守恒、唯一可解性和无条件能量梯度稳定性。大量的数值实验验证了理论发现,包括质量守恒,能量稳定性和准确性,在空间和时间上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信