On Gelfand pairs and degenerate Gelfand-Graev modules of general linear groups of degree two over principal ideal local rings of finite length

IF 0.8 2区 数学 Q2 MATHEMATICS
Archita Gupta, Pooja Singla
{"title":"On Gelfand pairs and degenerate Gelfand-Graev modules of general linear groups of degree two over principal ideal local rings of finite length","authors":"Archita Gupta,&nbsp;Pooja Singla","doi":"10.1016/j.jalgebra.2025.06.039","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a principal ideal local ring of finite length with a finite residue field of odd characteristic. Denote by <span><math><mi>G</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the general linear group of degree two over <em>R</em>, and by <span><math><mi>B</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> the Borel subgroup of <span><math><mi>G</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> consisting of upper triangular matrices. In this article, we prove that the pair <span><math><mo>(</mo><mi>G</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mi>B</mi><mo>(</mo><mi>R</mi><mo>)</mo><mo>)</mo></math></span> is a strong Gelfand pair. We also investigate the decomposition of the degenerate Gelfand-Graev (DGG) modules of <span><math><mi>G</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. It is known that the non-degenerate Gelfand Graev module (also called non-degenerate Whittaker model) of <span><math><mi>G</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is multiplicity-free. We characterize the DGG-modules where the multiplicities are independent of the cardinality of the residue field. We provide a complete decomposition of all DGG-modules of <span><math><mi>G</mi><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for <em>R</em> of length at most four.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 78-108"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a principal ideal local ring of finite length with a finite residue field of odd characteristic. Denote by G(R) the general linear group of degree two over R, and by B(R) the Borel subgroup of G(R) consisting of upper triangular matrices. In this article, we prove that the pair (G(R),B(R)) is a strong Gelfand pair. We also investigate the decomposition of the degenerate Gelfand-Graev (DGG) modules of G(R). It is known that the non-degenerate Gelfand Graev module (also called non-degenerate Whittaker model) of G(R) is multiplicity-free. We characterize the DGG-modules where the multiplicities are independent of the cardinality of the residue field. We provide a complete decomposition of all DGG-modules of G(R) for R of length at most four.
有限长主理想局部环上一般二阶线性群的Gelfand对和退化Gelfand- graev模
设R为一个具有奇特征的有限剩余域的有限长主理想局部环。用G(R)表示在R上二阶的一般线性群,用B(R)表示由上三角矩阵组成的G(R)的Borel子群。本文证明了(G(R),B(R))对是强Gelfand对。我们还研究了G(R)的退化Gelfand-Graev (DGG)模的分解。已知G(R)的非简并Gelfand Graev模(也称为非简并Whittaker模型)是无多重性的。我们描述了多重度与剩余域的基数无关的dgg -模。对于长度不超过4的R,我们给出了G(R)的所有dgg -模的完全分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信