Saeed Moarrefi , Mohammad Rajabi Naraki , Mohan Jacob , Nilay Shah , Stephen Skinner , Lichao Jia , Shou-Han Zhou , Weiwei Cai , Liyuan Fan
{"title":"Adsorption thermodynamics of methane reforming over solid oxide fuel cell anodes","authors":"Saeed Moarrefi , Mohammad Rajabi Naraki , Mohan Jacob , Nilay Shah , Stephen Skinner , Lichao Jia , Shou-Han Zhou , Weiwei Cai , Liyuan Fan","doi":"10.1016/j.jpowsour.2025.237905","DOIUrl":null,"url":null,"abstract":"<div><div>Adsorption kinetics and thermodynamics on nickel base anode materials remain underexplored under reforming conditions when fuelled directly with methane. The kinetics determine how quickly and effectively reactant gases interact on the anode surfaces, affecting the behavior of subsequent electrochemical reactions. However, the complexity of these interactions under operating conditions have led to a limited number of detailed studies in this area. Thus, further investigation into adsorption kinetics could unlock new possibilities for optimizing fuel cell performance. This study examines the adsorption Gibbs free energy of reactants on the anode in solid oxide fuel cell to assess the electrocatalyst activity. Our findings reveal that H<sub>2</sub>O exhibits more favorable adsorption conditions than CO<sub>2</sub> on the catalyst surface, and increased temperature and current density lead to different surface adsorption behaviours. The results show that steam reforming prevents coke formation on the fuel cell anode more effectively than dry reforming. This proposed method can also be used to examine the coke resistance and the performance of anode structures during the investigation and development stages for fuel cell research. The study provides valuable insights into anode performance and offers a foundation for future advancements in SOFC technology.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"655 ","pages":"Article 237905"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325017410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adsorption kinetics and thermodynamics on nickel base anode materials remain underexplored under reforming conditions when fuelled directly with methane. The kinetics determine how quickly and effectively reactant gases interact on the anode surfaces, affecting the behavior of subsequent electrochemical reactions. However, the complexity of these interactions under operating conditions have led to a limited number of detailed studies in this area. Thus, further investigation into adsorption kinetics could unlock new possibilities for optimizing fuel cell performance. This study examines the adsorption Gibbs free energy of reactants on the anode in solid oxide fuel cell to assess the electrocatalyst activity. Our findings reveal that H2O exhibits more favorable adsorption conditions than CO2 on the catalyst surface, and increased temperature and current density lead to different surface adsorption behaviours. The results show that steam reforming prevents coke formation on the fuel cell anode more effectively than dry reforming. This proposed method can also be used to examine the coke resistance and the performance of anode structures during the investigation and development stages for fuel cell research. The study provides valuable insights into anode performance and offers a foundation for future advancements in SOFC technology.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems