Machine learning insights and performance assessments into nanofluid-enhanced PV-T solar collector

Q1 Chemical Engineering
Khalee Ali Khudhur, Seyed Esmail Razavi, Mir Biuok Ehghaghi Bonab
{"title":"Machine learning insights and performance assessments into nanofluid-enhanced PV-T solar collector","authors":"Khalee Ali Khudhur,&nbsp;Seyed Esmail Razavi,&nbsp;Mir Biuok Ehghaghi Bonab","doi":"10.1016/j.ijft.2025.101337","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic-thermal (PV-T) systems combine solar thermal absorbers with PV cells, enhancing solar energy capture by producing both electrical and thermal energy. This hybrid setup improves PV cell efficiency and supports heating applications. Artificial Neural Network (ANN) models, effective in handling complex, non-linear interactions, are used to predict PV-T performance under various conditions. In this study, a photovoltaic/thermal (PV-T) collector employing nanofluids as the cooling medium is thoroughly investigated. Numerical models are developed to analyze the influence of key operating parameters, such as nanofluids type and their concentration, solar irradiation, and mass flow rate, on performance indicators of PV-T collectors. This research introduces a novel approach by integrating an artificial neural network (ANN) model to performance prediction of the PV-T collector. The ANN model is validated against numerical data and provides a tool that aids in both optimizing operating conditions of the PV-T collector and rapidly designing new experiments. Key findings reveal that increasing nanofluid concentration enhances convective heat transfer, reducing absorber plate temperatures. For Al₂O₃-Water at a flow rate of 3 L/min, maximum absorber plate temperatures drop to 313 K, 312 K, and 310 K for concentrations of 1 %, 2 %, and 3 %, respectively—reductions of up to 6 K compared to water. Similarly, CuO-Water achieves reductions of up to 7 K under the same conditions. The ANN model achieves R² values exceeding 0.97 for all performance metrics, with prediction errors below 0.1 for Al₂O₃-Water and 0.05 for CuO-Water electrical efficiency.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101337"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725002848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic-thermal (PV-T) systems combine solar thermal absorbers with PV cells, enhancing solar energy capture by producing both electrical and thermal energy. This hybrid setup improves PV cell efficiency and supports heating applications. Artificial Neural Network (ANN) models, effective in handling complex, non-linear interactions, are used to predict PV-T performance under various conditions. In this study, a photovoltaic/thermal (PV-T) collector employing nanofluids as the cooling medium is thoroughly investigated. Numerical models are developed to analyze the influence of key operating parameters, such as nanofluids type and their concentration, solar irradiation, and mass flow rate, on performance indicators of PV-T collectors. This research introduces a novel approach by integrating an artificial neural network (ANN) model to performance prediction of the PV-T collector. The ANN model is validated against numerical data and provides a tool that aids in both optimizing operating conditions of the PV-T collector and rapidly designing new experiments. Key findings reveal that increasing nanofluid concentration enhances convective heat transfer, reducing absorber plate temperatures. For Al₂O₃-Water at a flow rate of 3 L/min, maximum absorber plate temperatures drop to 313 K, 312 K, and 310 K for concentrations of 1 %, 2 %, and 3 %, respectively—reductions of up to 6 K compared to water. Similarly, CuO-Water achieves reductions of up to 7 K under the same conditions. The ANN model achieves R² values exceeding 0.97 for all performance metrics, with prediction errors below 0.1 for Al₂O₃-Water and 0.05 for CuO-Water electrical efficiency.
纳米流体增强型PV-T太阳能集热器的机器学习见解和性能评估
光伏-热(PV- t)系统将太阳能热吸收器与光伏电池相结合,通过产生电能和热能来增强太阳能捕获。这种混合装置提高了光伏电池的效率,并支持加热应用。人工神经网络(ANN)模型可以有效地处理复杂的非线性相互作用,用于预测各种条件下PV-T的性能。在这项研究中,深入研究了采用纳米流体作为冷却介质的光伏/热(PV-T)集热器。建立了数值模型,分析了纳米流体类型及其浓度、太阳辐照度和质量流量等关键操作参数对PV-T集热器性能指标的影响。本文提出了一种将人工神经网络(ANN)模型集成到PV-T集热器性能预测中的新方法。该人工神经网络模型通过数值数据进行了验证,为优化PV-T集热器的操作条件和快速设计新的实验提供了工具。主要研究结果表明,增加纳米流体浓度可以增强对流换热,降低吸收板温度。对于Al₂O₃-水,在流速为3l /min的情况下,当浓度分别为1%、2%和3%时,吸收板的最高温度分别降至313k、312k和310k,与水相比降低了6k。同样,在相同的条件下,CuO-Water可以减少高达7 K的水分。ANN模型在所有性能指标上的R²值都超过0.97,Al₂O₃-Water的预测误差低于0.1,CuO-Water的预测误差低于0.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信