Novel high specific-strength multi-topology Al-Ni-Ti-Zr-Mn alloy using laser powder bed fusion additive manufacturing

IF 4.7 Q2 ENGINEERING, MANUFACTURING
Amit Kumar Singh , Prithvi D. Awasthi , Ankita Roy , Priyanka Agrawal , Aishani Sharma , Anurag Gumaste , Ravi Sankar Haridas , Rajiv S. Mishra
{"title":"Novel high specific-strength multi-topology Al-Ni-Ti-Zr-Mn alloy using laser powder bed fusion additive manufacturing","authors":"Amit Kumar Singh ,&nbsp;Prithvi D. Awasthi ,&nbsp;Ankita Roy ,&nbsp;Priyanka Agrawal ,&nbsp;Aishani Sharma ,&nbsp;Anurag Gumaste ,&nbsp;Ravi Sankar Haridas ,&nbsp;Rajiv S. Mishra","doi":"10.1016/j.addlet.2025.100308","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing has opened a paradigm for the efficient and quick production of lightweight lattice structures showing characteristic high specific strength (strength-to-weight ratios). The current study describes the development of methodology and utilization of high strength Al alloy for building complex lattice using additive manufacturing. Thin plate lattice &lt;1 mm of Al-Ni-Ti-Zr-Mn alloy with wide processing window, achieving an average yield strength of 63.13±3.32 MPa in compression, with 28 % lower density than Ti-6Al-4V demonstrates a successful design of Al-Ni-Ti-Zr-Mn alloys using laser beam powder bed fusion (PBF-LB). The mitigation of cracks within thin plate parallel to the loading axis was achieved through the formation of Al-Al₃Ni eutectic channels, exploiting the rapid solidification of this short-freezing-range alloy. In addition to multi-topology structural design, the enhanced strength is attributed to hierarchical microstructure featuring L1₂ phases, bimodal grain distribution, and solid solution strengthening by Mn. This work establishes a printability-performance synergy of Al-Ni-Ti-Zr-Mn alloy for thin plate complex lattice, advancing the use of metamaterials through PBF-LB.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"14 ","pages":"Article 100308"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing has opened a paradigm for the efficient and quick production of lightweight lattice structures showing characteristic high specific strength (strength-to-weight ratios). The current study describes the development of methodology and utilization of high strength Al alloy for building complex lattice using additive manufacturing. Thin plate lattice <1 mm of Al-Ni-Ti-Zr-Mn alloy with wide processing window, achieving an average yield strength of 63.13±3.32 MPa in compression, with 28 % lower density than Ti-6Al-4V demonstrates a successful design of Al-Ni-Ti-Zr-Mn alloys using laser beam powder bed fusion (PBF-LB). The mitigation of cracks within thin plate parallel to the loading axis was achieved through the formation of Al-Al₃Ni eutectic channels, exploiting the rapid solidification of this short-freezing-range alloy. In addition to multi-topology structural design, the enhanced strength is attributed to hierarchical microstructure featuring L1₂ phases, bimodal grain distribution, and solid solution strengthening by Mn. This work establishes a printability-performance synergy of Al-Ni-Ti-Zr-Mn alloy for thin plate complex lattice, advancing the use of metamaterials through PBF-LB.
采用激光粉末床熔融增材制造新型高比强度多拓扑Al-Ni-Ti-Zr-Mn合金
增材制造为高效、快速生产具有高比强度(强度重量比)特征的轻质点阵结构开辟了一个范例。本文介绍了利用增材制造技术构建复杂晶格的高强度铝合金的方法和应用。1 mm的Al-Ni-Ti-Zr-Mn薄板点阵,宽加工窗口,压缩平均屈服强度为63.13±3.32 MPa,密度比Ti-6Al-4V低28%,证明了采用激光束粉末床熔合(PBF-LB)技术成功设计了Al-Ni-Ti-Zr-Mn合金。通过形成Al-Al₃Ni共晶通道,利用这种短冻结范围合金的快速凝固,实现了平行于加载轴的薄板内裂纹的缓解。除了多拓扑结构设计外,强度的提高还归因于L1₂相的分层组织、双峰晶粒分布和Mn的固溶强化。本工作建立了Al-Ni-Ti-Zr-Mn合金用于薄板复合晶格的印刷性-性能协同效应,通过PBF-LB推进了超材料的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信