Denoising algorithm of the modified Gray-Scott model on non-uniform grids

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Shanshan Ge , Jian Wang
{"title":"Denoising algorithm of the modified Gray-Scott model on non-uniform grids","authors":"Shanshan Ge ,&nbsp;Jian Wang","doi":"10.1016/j.camwa.2025.07.016","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an denoising algorithm based on the Gray-Scott (GS) model, which adopts non-uniform grids and highly adaptive numerical strategy to achieve effective denoising for two-dimensional (2D) and three-dimensional (3D) models. This method adjusts the grid density based on regional characteristics: dense grids are used in the area of interest to improve local accuracy, and sparse grids are used in non-critical areas to enhance the overall computational efficiency. In order to enhance the robustness and shape preserving ability, we modify the original GS model by replacing <span><math><mo>(</mo><mi>F</mi><mo>+</mo><mi>k</mi><mo>)</mo><mi>v</mi></math></span> with <span><math><mo>(</mo><mi>F</mi><mo>+</mo><mi>k</mi><mo>)</mo><mo>(</mo><mi>v</mi><mo>−</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>, which effectively relives the volume shrinkage and shape distortion problems, and achieves the retention of structural details and effective suppression of noise. Numerical experiments show that our algorithm can maintain key geometric features while improving the smoothness, and has excellent denoising performance and extensive applicability.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 191-211"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003074","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an denoising algorithm based on the Gray-Scott (GS) model, which adopts non-uniform grids and highly adaptive numerical strategy to achieve effective denoising for two-dimensional (2D) and three-dimensional (3D) models. This method adjusts the grid density based on regional characteristics: dense grids are used in the area of interest to improve local accuracy, and sparse grids are used in non-critical areas to enhance the overall computational efficiency. In order to enhance the robustness and shape preserving ability, we modify the original GS model by replacing (F+k)v with (F+k)(vv0), which effectively relives the volume shrinkage and shape distortion problems, and achieves the retention of structural details and effective suppression of noise. Numerical experiments show that our algorithm can maintain key geometric features while improving the smoothness, and has excellent denoising performance and extensive applicability.
改进Gray-Scott模型在非均匀网格上的去噪算法
本文介绍了一种基于Gray-Scott (GS)模型的去噪算法,该算法采用非均匀网格和高自适应数值策略对二维(2D)和三维(3D)模型进行有效去噪。该方法根据区域特征调整网格密度,在感兴趣区域使用密集网格来提高局部精度,在非关键区域使用稀疏网格来提高整体计算效率。为了增强鲁棒性和形状保持能力,我们将原GS模型的(F+k)v替换为(F+k)(v−v0),有效地解决了体积收缩和形状畸变问题,实现了结构细节的保留和对噪声的有效抑制。数值实验表明,该算法在保持关键几何特征的同时提高了平滑度,具有良好的去噪性能和广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信