{"title":"Robust globally divergence-free weak Galerkin variational data assimilation method for convection-dominated Oseen equations","authors":"Xian Zhang, Ya Min, Minfu Feng","doi":"10.1016/j.apnum.2025.07.011","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a weak Galerkin (WG) finite element method based on the variational approach for data assimilation of the unsteady convection-dominated Oseen equation. The WG scheme uses piecewise polynomials of degrees <em>k</em>(<span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>) and <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span> respectively for the approximations of the velocity and the pressure in the interior of elements, and uses piecewise polynomials of degree <em>k</em> for their numerical traces on the interfaces of elements. The method is shown to yield globally divergence-free approximations of the velocity and initial value. It is proved that the velocity error in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm has a Reynolds-robust error bound with quasi-optimal convergence order <span><math><mi>k</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> in the convection-dominated region. To solve the discrete optimality system efficiently, the conjugate gradient iterative algorithm is developed, which also preserves the globally divergence-free property of WG scheme. Numerical experiments are provided to verify the obtained theoretical results.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 22-42"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a weak Galerkin (WG) finite element method based on the variational approach for data assimilation of the unsteady convection-dominated Oseen equation. The WG scheme uses piecewise polynomials of degrees k() and respectively for the approximations of the velocity and the pressure in the interior of elements, and uses piecewise polynomials of degree k for their numerical traces on the interfaces of elements. The method is shown to yield globally divergence-free approximations of the velocity and initial value. It is proved that the velocity error in the -norm has a Reynolds-robust error bound with quasi-optimal convergence order in the convection-dominated region. To solve the discrete optimality system efficiently, the conjugate gradient iterative algorithm is developed, which also preserves the globally divergence-free property of WG scheme. Numerical experiments are provided to verify the obtained theoretical results.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.