{"title":"Carbon storage potential of Dendrocalamus hamiltonii Nees outside forest across different elevation ranges in central Nepal","authors":"Pramod Ghimire, Uchita Lamichhane","doi":"10.1016/j.bamboo.2025.100190","DOIUrl":null,"url":null,"abstract":"<div><div>Despite growing interest in bamboo’s role in climate mitigation, the influence of elevation on the carbon storage potential of <em>Dendrocalamus hamiltonii</em> in non-forest areas remains poorly understood. To address this gap, we estimated its biomass carbon stock across four elevation zones (200–400 m, 400–600 m, 600–800 m, and 800–1000 m) in areas outside the forest in the Chure region, Central Nepal. Altogether 44 square sample plots, each 100 m<sup>2</sup> in area, were established. We utilized purposive sampling and non-destructive methods to measure bamboo culm diameters. Soil samples were taken from two soil depths: 0–5 cm and 16–30 cm using soil augers and core samplers. Findings showed a notable difference in average culm diameter, clump density and carbon sequestration potential across the elevation range. Clump density (418 ha<sup>−1</sup>) and culm diameter (6.02 ± 0.26 cm) were higher at the 400–600 m elevation range. The total average C stock in <em>Dendrocalamus hamiltonii</em> was higher (86.41 M gha<sup>−1</sup>) at the 400–600 m range, declining to 59.29 Mg ha<sup>−1</sup> at the 800–1000 m range. This study showed a significant difference in both aboveground C stock (AGCS) and soil organic carbon (SOC) along different elevation ranges (<em>p</em> < 0.001). Thus the findings highlight the promising role of <em>Dendrocalamus hamiltonii</em> Nees in C stock enhancement for climate mitigation in Nepal.</div></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"12 ","pages":"Article 100190"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139125000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Despite growing interest in bamboo’s role in climate mitigation, the influence of elevation on the carbon storage potential of Dendrocalamus hamiltonii in non-forest areas remains poorly understood. To address this gap, we estimated its biomass carbon stock across four elevation zones (200–400 m, 400–600 m, 600–800 m, and 800–1000 m) in areas outside the forest in the Chure region, Central Nepal. Altogether 44 square sample plots, each 100 m2 in area, were established. We utilized purposive sampling and non-destructive methods to measure bamboo culm diameters. Soil samples were taken from two soil depths: 0–5 cm and 16–30 cm using soil augers and core samplers. Findings showed a notable difference in average culm diameter, clump density and carbon sequestration potential across the elevation range. Clump density (418 ha−1) and culm diameter (6.02 ± 0.26 cm) were higher at the 400–600 m elevation range. The total average C stock in Dendrocalamus hamiltonii was higher (86.41 M gha−1) at the 400–600 m range, declining to 59.29 Mg ha−1 at the 800–1000 m range. This study showed a significant difference in both aboveground C stock (AGCS) and soil organic carbon (SOC) along different elevation ranges (p < 0.001). Thus the findings highlight the promising role of Dendrocalamus hamiltonii Nees in C stock enhancement for climate mitigation in Nepal.