Julia Halford, Amanda J. Senatore, Sage Berryman, Antonio Muñoz, Destinee Semidey, Ryan A. Doan, Adam M. Coombs, Brandon Noimany, Katie Emberley, Ben Emery, Kelly R. Monk, Swetha E. Murthy
{"title":"TMEM63A, associated with hypomyelinating leukodystrophies, is an evolutionarily conserved regulator of myelination","authors":"Julia Halford, Amanda J. Senatore, Sage Berryman, Antonio Muñoz, Destinee Semidey, Ryan A. Doan, Adam M. Coombs, Brandon Noimany, Katie Emberley, Ben Emery, Kelly R. Monk, Swetha E. Murthy","doi":"10.1073/pnas.2507354122","DOIUrl":null,"url":null,"abstract":"Infantile hypomyelinating leukodystrophy 19 (HLD19) is a rare genetic disorder where patients exhibit reduced myelin in central nervous system (CNS) white matter tracts and present with varied neurological symptoms. The causative gene <jats:italic toggle=\"yes\">TMEM63A</jats:italic> encodes a mechanosensitive ion channel whose role in myelination is largely unexplored. Our study shows that TMEM63A is a major regulator of oligodendrocyte (OL)-dependent myelination in the CNS. In mouse and zebrafish, <jats:italic toggle=\"yes\">Tmem63a</jats:italic> inactivation led to early deficits in myelination, recapitulating the HLD19 phenotype. OL-specific conditional mouse knockouts of <jats:italic toggle=\"yes\">Tmem63a</jats:italic> exhibited transient reductions in myelin, indicating that TMEM63A regulates myelination cell-autonomously. We show that TMEM63A is present at the plasma membrane and on lysosomes and modulates myelin production in the presence of mechanical cues. Intriguingly, HLD19-associated <jats:italic toggle=\"yes\">TMEM63A</jats:italic> variants from patients blocked trafficking to cell membrane. Together, our results reveal an ancient role for TMEM63A in fundamental aspects of myelination in vivo and highlight two exciting models for the development of treatments for devastating hypomyelinating leukodystrophies.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"32 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2507354122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Infantile hypomyelinating leukodystrophy 19 (HLD19) is a rare genetic disorder where patients exhibit reduced myelin in central nervous system (CNS) white matter tracts and present with varied neurological symptoms. The causative gene TMEM63A encodes a mechanosensitive ion channel whose role in myelination is largely unexplored. Our study shows that TMEM63A is a major regulator of oligodendrocyte (OL)-dependent myelination in the CNS. In mouse and zebrafish, Tmem63a inactivation led to early deficits in myelination, recapitulating the HLD19 phenotype. OL-specific conditional mouse knockouts of Tmem63a exhibited transient reductions in myelin, indicating that TMEM63A regulates myelination cell-autonomously. We show that TMEM63A is present at the plasma membrane and on lysosomes and modulates myelin production in the presence of mechanical cues. Intriguingly, HLD19-associated TMEM63A variants from patients blocked trafficking to cell membrane. Together, our results reveal an ancient role for TMEM63A in fundamental aspects of myelination in vivo and highlight two exciting models for the development of treatments for devastating hypomyelinating leukodystrophies.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.