Advancing Electrochemical Nitrate Reduction: Overcoming Rate‐Limiting Bottlenecks with Copper/Cobalt Catalysts

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin Li, Yuan Wang, Xiujing Xing, Yang Wang, Wei Xiong, Hao Li
{"title":"Advancing Electrochemical Nitrate Reduction: Overcoming Rate‐Limiting Bottlenecks with Copper/Cobalt Catalysts","authors":"Jin Li, Yuan Wang, Xiujing Xing, Yang Wang, Wei Xiong, Hao Li","doi":"10.1002/adfm.202513717","DOIUrl":null,"url":null,"abstract":"Electrochemical Nitrate Reduction (NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR) is a promising green process for producing ammonia and treating waste water. The nitrate‐to‐ammonia reduction involves multi‐step electron/proton‐transfer processes, where the NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>→NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> step may serve as the rate‐determining step, posing a critical bottleneck for efficient NH<jats:sub>3</jats:sub> synthesis. In this paper, the emulsion hydrothermal method is used to synthesize spherical and nanoflower‐like CuO/CuCo<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> catalysts with small particle stacking. Among them, CuCo<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> perfectly inherits the advantages of CuO and Co<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, and successfully connects the two‐step reactions of NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>→NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup> and NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>→NH<jats:sub>3</jats:sub> in series. The CuO formed by excess copper doping is reduced to monomeric copper during electrolysis. Cu is able to synergize with CuCo<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> to break through the bottleneck of the rate‐limiting step of NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>→NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>, exhibiting almost the same ammonia production efficiency in both NO<jats:sub>3</jats:sub><jats:sup>−</jats:sup>RR and nitrite reduction reaction (NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>RR). The NH<jats:sub>3</jats:sub> yield of Cu/CuCo<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> at −0.70 V (vs RHE) reached a maximum of 24.58 mg h<jats:sup>−1</jats:sup> mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> under neutral electrolyte conditions and exhibited 100% Faraday efficiency for NH<jats:sub>3</jats:sub>. Under the same conditions (where the reaction substrate is NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>), Cu/CuCo<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> reached an NH<jats:sub>3</jats:sub> yield of 24.34 mg h<jats:sup>−1</jats:sup> mg<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> in NO<jats:sub>2</jats:sub><jats:sup>−</jats:sup>RR.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"19 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202513717","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical Nitrate Reduction (NO3RR) is a promising green process for producing ammonia and treating waste water. The nitrate‐to‐ammonia reduction involves multi‐step electron/proton‐transfer processes, where the NO3→NO2 step may serve as the rate‐determining step, posing a critical bottleneck for efficient NH3 synthesis. In this paper, the emulsion hydrothermal method is used to synthesize spherical and nanoflower‐like CuO/CuCo2O4 catalysts with small particle stacking. Among them, CuCo2O4 perfectly inherits the advantages of CuO and Co3O4, and successfully connects the two‐step reactions of NO3→NO2 and NO2→NH3 in series. The CuO formed by excess copper doping is reduced to monomeric copper during electrolysis. Cu is able to synergize with CuCo2O4 to break through the bottleneck of the rate‐limiting step of NO3→NO2, exhibiting almost the same ammonia production efficiency in both NO3RR and nitrite reduction reaction (NO2RR). The NH3 yield of Cu/CuCo2O4 at −0.70 V (vs RHE) reached a maximum of 24.58 mg h−1 mgcat−1 under neutral electrolyte conditions and exhibited 100% Faraday efficiency for NH3. Under the same conditions (where the reaction substrate is NO2), Cu/CuCo2O4 reached an NH3 yield of 24.34 mg h−1 mgcat−1 in NO2RR.
推进电化学还原硝酸盐:铜/钴催化剂克服速率限制瓶颈
电化学硝酸还原(NO3−RR)是一种很有前途的绿色制氨和废水处理工艺。硝酸还原为氨涉及多步电子/质子转移过程,其中NO3−→NO2−步骤可能是速率决定步骤,这是有效合成NH3的关键瓶颈。本文采用乳状水热法制备了球形和纳米花状CuO/CuCo2O4催化剂,其颗粒堆积较小。其中,CuCo2O4完美地继承了CuO和Co3O4的优点,成功地串联了NO3−→NO2−和NO2−→NH3两步反应。过量铜掺杂形成的CuO在电解过程中被还原为单体铜。Cu能够与CuCo2O4协同作用,突破NO3−→NO2−这一限速步骤的瓶颈,在NO3−RR和亚硝酸盐还原反应(NO2−RR)中表现出几乎相同的产氨效率。在中性电解质条件下,在−0.70 V (vs RHE)下Cu/CuCo2O4的NH3产率达到最大值24.58 mg h−1 mgcat−1,NH3的法拉第效率为100%。在相同条件下(反应底物为NO2−),Cu/CuCo2O4在NO2−RR条件下NH3产率为24.34 mg h−1 mgcat−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信