Amin Hashemi, Elizabeth Louis Pereira, Hongwei Li, Jose L. Lado, Andrea Blanco-Redondo
{"title":"Observation of non-Hermitian topology from optical loss modulation","authors":"Amin Hashemi, Elizabeth Louis Pereira, Hongwei Li, Jose L. Lado, Andrea Blanco-Redondo","doi":"10.1038/s41563-025-02278-8","DOIUrl":null,"url":null,"abstract":"<p>Understanding the interplay of non-Hermiticity and topology is crucial given the intrinsic openness of most natural and engineered systems, and has important ramifications in topological lasers and sensors. Recently, it has been theoretically proposed that topological features could originate solely from a system’s non-Hermiticity in photonic platforms. Here we experimentally demonstrate the appearance of non-Hermitian topology exclusively from loss modulation in a photonic system that is topologically trivial in the absence of loss. We do this by implementing a non-Hermitian generalization of an Aubry–André–Harper model with purely imaginary potential in a programmable integrated photonics platform, which allows us to investigate different periodic and quasiperiodic configurations of the model. In both cases, we show the emergence of topological edge modes and explore their resilience to different kinds of disorder. Our work highlights loss engineering as a mechanism to generate topological properties.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"14 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02278-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the interplay of non-Hermiticity and topology is crucial given the intrinsic openness of most natural and engineered systems, and has important ramifications in topological lasers and sensors. Recently, it has been theoretically proposed that topological features could originate solely from a system’s non-Hermiticity in photonic platforms. Here we experimentally demonstrate the appearance of non-Hermitian topology exclusively from loss modulation in a photonic system that is topologically trivial in the absence of loss. We do this by implementing a non-Hermitian generalization of an Aubry–André–Harper model with purely imaginary potential in a programmable integrated photonics platform, which allows us to investigate different periodic and quasiperiodic configurations of the model. In both cases, we show the emergence of topological edge modes and explore their resilience to different kinds of disorder. Our work highlights loss engineering as a mechanism to generate topological properties.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.