Obtuse-angled separation of chiral resonances with planar asymmetry–induced tunability of quality factors

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Minsu Jeong, Jihae Lee, Seokwoo Kim, Xiangxin Gong, Rouli Fang, Yuhui Yang, Sang Hoon Chae, Junsuk Rho
{"title":"Obtuse-angled separation of chiral resonances with planar asymmetry–induced tunability of quality factors","authors":"Minsu Jeong,&nbsp;Jihae Lee,&nbsp;Seokwoo Kim,&nbsp;Xiangxin Gong,&nbsp;Rouli Fang,&nbsp;Yuhui Yang,&nbsp;Sang Hoon Chae,&nbsp;Junsuk Rho","doi":"10.1126/sciadv.adu4875","DOIUrl":null,"url":null,"abstract":"<div >Photonic crystal (PhC) supports Bloch resonances that confine electromagnetic energy within the subwavelength thickness and enable polarization modulation through their intrinsic mode states. If a PhC generates chiral resonances, then it can selectively enhance or suppress specific circular polarizations, making it ideal for chiral optics. Here, we devise a design strategy to realize chiral resonant modes with large angular divergence and tunable quality factors (<i>Q</i> factors) by introducing planar structural perturbations. The <i>Q</i> factor exhibits an inverse-square dependence on perturbation strength, consistent with the behavior of quasi-bound states in the continuum. Theoretical and experimental results demonstrate chiral modes with high circular dichroism, large separation angles, and high-<i>Q</i> factors. We further couple 2D excitons to these resonant modes, achieving spatially separated chiral emission. Using Brillouin zone folding, we translate bound modes at high-symmetry points into the radiative region, suggesting a strategy to control polarization, group velocity, and topology in photonic systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu4875","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu4875","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic crystal (PhC) supports Bloch resonances that confine electromagnetic energy within the subwavelength thickness and enable polarization modulation through their intrinsic mode states. If a PhC generates chiral resonances, then it can selectively enhance or suppress specific circular polarizations, making it ideal for chiral optics. Here, we devise a design strategy to realize chiral resonant modes with large angular divergence and tunable quality factors (Q factors) by introducing planar structural perturbations. The Q factor exhibits an inverse-square dependence on perturbation strength, consistent with the behavior of quasi-bound states in the continuum. Theoretical and experimental results demonstrate chiral modes with high circular dichroism, large separation angles, and high-Q factors. We further couple 2D excitons to these resonant modes, achieving spatially separated chiral emission. Using Brillouin zone folding, we translate bound modes at high-symmetry points into the radiative region, suggesting a strategy to control polarization, group velocity, and topology in photonic systems.

Abstract Image

具有平面不对称诱导品质因子可调性的手性共振钝角分离
光子晶体(PhC)支持布洛赫共振,将电磁能量限制在亚波长厚度内,并通过其固有模式状态实现偏振调制。如果PhC产生手性共振,那么它可以选择性地增强或抑制特定的圆偏振,使其成为理想的手性光学。在此,我们设计了一种设计策略,通过引入平面结构摄动来实现具有大角发散和可调品质因子(Q因子)的手性谐振模式。Q因子与扰动强度呈平方反比关系,与连续介质中准束缚态的行为一致。理论和实验结果表明,手性模式具有高圆二色性、大分离角和高Q因子。我们进一步将二维激子耦合到这些共振模式上,实现了空间分离的手性发射。利用布里渊区折叠,我们将高对称点的束缚模式转换为辐射区域,提出了一种控制光子系统偏振、群速度和拓扑结构的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信