Enhanced electrochemical performance of a composite made of core-shell structured ZnMn2O4@TiO2 and soft carbon as an anode material for lithium-ion batteries

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Yen-Shen Kuo , Yi-Chun Liu , Jenn-Kun Kuo , Yi-Hung Liu
{"title":"Enhanced electrochemical performance of a composite made of core-shell structured ZnMn2O4@TiO2 and soft carbon as an anode material for lithium-ion batteries","authors":"Yen-Shen Kuo ,&nbsp;Yi-Chun Liu ,&nbsp;Jenn-Kun Kuo ,&nbsp;Yi-Hung Liu","doi":"10.1016/j.electacta.2025.146982","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of green energy requires efficient large-scale energy storage, with high-energy-density lithium-ion batteries playing a pivotal role. ZnMn<sub>2</sub>O<sub>4</sub> (ZMO), a ternary transition metal oxide, is known for its abundance of component elements, cost-effectiveness, non-toxicity, and high theoretical capacity (∼1000 mAh g<sup>-1</sup>). However, its low electrical conductivity and substantial volume expansion during cycling lead to particle fracture and rapid capacity degradation. In this study, a core-shell ZnMn<sub>2</sub>O<sub>4</sub>@TiO<sub>2</sub> composite anode material incorporating soft carbon was developed. The TiO<sub>2</sub> layer enables to mitigate ZMO volume expansion and provide a rapid charge transfer pathway, while the incorporation of soft carbon can enhance the surface area and increase lithium storage sites. The optimized composite anode ([email protected]) exhibits pseudo-capacitive behavior, which achieves a high discharge capacity of 1170 mAh g<sup>-1</sup> in the 100th cycle and exceeds the initial capacity by over 250 mAh g<sup>-1</sup>. Furthermore, it demonstrates promising rate performance, retaining 85 % of its capacity at 1000 mA g<sup>-1</sup> compared to 100 mA g<sup>-1</sup>. This work presents a viable strategy for developing high-energy-density lithium-ion batteries with enhanced cycling and rate performances.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"539 ","pages":"Article 146982"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625013428","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of green energy requires efficient large-scale energy storage, with high-energy-density lithium-ion batteries playing a pivotal role. ZnMn2O4 (ZMO), a ternary transition metal oxide, is known for its abundance of component elements, cost-effectiveness, non-toxicity, and high theoretical capacity (∼1000 mAh g-1). However, its low electrical conductivity and substantial volume expansion during cycling lead to particle fracture and rapid capacity degradation. In this study, a core-shell ZnMn2O4@TiO2 composite anode material incorporating soft carbon was developed. The TiO2 layer enables to mitigate ZMO volume expansion and provide a rapid charge transfer pathway, while the incorporation of soft carbon can enhance the surface area and increase lithium storage sites. The optimized composite anode ([email protected]) exhibits pseudo-capacitive behavior, which achieves a high discharge capacity of 1170 mAh g-1 in the 100th cycle and exceeds the initial capacity by over 250 mAh g-1. Furthermore, it demonstrates promising rate performance, retaining 85 % of its capacity at 1000 mA g-1 compared to 100 mA g-1. This work presents a viable strategy for developing high-energy-density lithium-ion batteries with enhanced cycling and rate performances.

Abstract Image

Abstract Image

核壳结构ZnMn2O4@TiO2与软碳作为锂离子电池负极材料的复合材料的电化学性能增强
绿色能源的利用需要高效的大规模储能,高能量密度锂离子电池在其中发挥着关键作用。ZnMn2O4 (ZMO)是一种三元过渡金属氧化物,以其丰富的成分元素、成本效益、无毒性和高理论容量(~ 1000 mAh g-1)而闻名。然而,它的低导电性和循环过程中大量的体积膨胀导致颗粒断裂和容量快速退化。本研究开发了一种含有软碳的核壳ZnMn2O4@TiO2复合负极材料。TiO2层能够减缓ZMO的体积膨胀并提供快速的电荷转移途径,而软碳的加入可以增加表面积并增加锂的存储位点。优化后的复合阳极(ZMO@Ti0.052-SC0.25)表现出伪电容性,在第100次循环中达到1170 mAh g-1的高放电容量,比初始容量高出250 mAh g-1以上。此外,它表现出了很好的速率性能,与100毫安毫安相比,在1000毫安毫安毫安下保持了85%的容量。这项工作为开发具有增强循环和倍率性能的高能量密度锂离子电池提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信