MXene@Cu2-xSe heteroarchitectures with synergistic redox-active sites for advanced asymmetric supercapacitors

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xuan Wei , Linlin Li , Feng Chen , Wanzhong Feng , Hongyue Wu
{"title":"MXene@Cu2-xSe heteroarchitectures with synergistic redox-active sites for advanced asymmetric supercapacitors","authors":"Xuan Wei ,&nbsp;Linlin Li ,&nbsp;Feng Chen ,&nbsp;Wanzhong Feng ,&nbsp;Hongyue Wu","doi":"10.1016/j.apsusc.2025.164132","DOIUrl":null,"url":null,"abstract":"<div><div>A novel MXene@Cu<sub>2-x</sub>Se hybrid electrode has been successfully synthesized through a facile in situ selenization strategy. The two-dimensional layered architecture and abundant surface terminations of MXene provide favorable pathways for efficient ion diffusion and charge storage, while the incorporation of Cu<sub>2-x</sub>Se nanoparticles significantly enhances the composite’s electroactive surface area and pseudocapacitive contributions. Systematic electrochemical characterization reveals that the MXene@Cu<sub>2-x</sub>Se composite demonstrates a high specific capacitance of 384.0 F g<sup>−1</sup> at 1 A g<sup>−1</sup> in a three-electrode configuration. An asymmetric supercapacitor device was assembled using MXene@Cu<sub>2-x</sub>Se as the positive electrode and activated carbon as the negative electrode, achieving a remarkable energy density of 71.1 Wh kg<sup>−1</sup> at a power density of 800 W kg<sup>−1</sup>. Furthermore, the device exhibits outstanding cycling stability with 76.2 % capacitance retention after 8,000 charge–discharge cycles, demonstrating its potential for practical energy storage applications.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"712 ","pages":"Article 164132"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225018471","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel MXene@Cu2-xSe hybrid electrode has been successfully synthesized through a facile in situ selenization strategy. The two-dimensional layered architecture and abundant surface terminations of MXene provide favorable pathways for efficient ion diffusion and charge storage, while the incorporation of Cu2-xSe nanoparticles significantly enhances the composite’s electroactive surface area and pseudocapacitive contributions. Systematic electrochemical characterization reveals that the MXene@Cu2-xSe composite demonstrates a high specific capacitance of 384.0 F g−1 at 1 A g−1 in a three-electrode configuration. An asymmetric supercapacitor device was assembled using MXene@Cu2-xSe as the positive electrode and activated carbon as the negative electrode, achieving a remarkable energy density of 71.1 Wh kg−1 at a power density of 800 W kg−1. Furthermore, the device exhibits outstanding cycling stability with 76.2 % capacitance retention after 8,000 charge–discharge cycles, demonstrating its potential for practical energy storage applications.

Abstract Image

Abstract Image

MXene@Cu2-xSe具有协同氧化还原活性位点的先进非对称超级电容器异质结构
通过一种简单的原位硒化策略,成功合成了一种新型MXene@Cu2-xSe杂化电极。MXene的二维层状结构和丰富的表面末端为有效的离子扩散和电荷存储提供了有利的途径,而Cu2-xSe纳米颗粒的掺入显著提高了复合材料的电活性表面积和赝电容贡献。系统的电化学表征表明,MXene@Cu2-xSe复合材料在三电极结构下,在1 a g−1时具有384.0 F g−1的高比电容。以MXene@Cu2-xSe为正极,活性炭为负极组装了非对称超级电容器器件,在功率密度为800 W kg - 1的情况下,获得了71.1 Wh kg - 1的能量密度。此外,该器件在8000次充放电循环后表现出出色的循环稳定性,电容保持率为76.2 %,显示出其在实际储能应用中的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信