Hao Li, Damián Insua-Costa, Akash Koppa, João Lucas Geirinhas, Jessica Keune, Chiara M. Holgate, Francina Dominguez, Victoria M. H. Deman, Adriaan J. Teuling, Diego G. Miralles
{"title":"Observational evidence of compensatory influences of deforestation on downwind precipitation in Brazilian breadbaskets","authors":"Hao Li, Damián Insua-Costa, Akash Koppa, João Lucas Geirinhas, Jessica Keune, Chiara M. Holgate, Francina Dominguez, Victoria M. H. Deman, Adriaan J. Teuling, Diego G. Miralles","doi":"10.1038/s41612-025-01152-3","DOIUrl":null,"url":null,"abstract":"<p>Stable and predictable wet-season rainfall is crucial for soybean production in Brazil. However, climate and land-use changes, particularly Amazon deforestation, have increased rainfall variability in the region in recent decades. Here, we investigate long-term growing-season rainfall changes over two major soybean breadbaskets in Brazil from the perspective of atmospheric moisture transport. Utilising a novel moisture tracking framework based on a Lagrangian model guided by observations, we identify moisture source regions where evaporation contributed to rainfall over these breadbaskets. Furthermore, we quantify the relative contributions of source evaporation versus atmospheric (thermo)dynamics changes to downwind rainfall variability. Our results indicate that deforestation-induced evaporation declines have negatively impacted downwind rainfall in the breadbasket regions. However, strengthened circulation, evidenced by increased water vapour transport and low-level wind speeds consistent with decreased tree cover, has enhanced moisture transport from upwind regions (including Amazonia and the Atlantic Ocean) to the Brazilian soybean breadbaskets. This highlights the compensatory effects of deforestation on rainfall through decreased evaporation and altered atmospheric (thermo)dynamics, and how these effects may influence downwind soybean productivity in South America. Further understanding these interactions is critical for developing land management strategies to mitigate the agricultural impacts of climate change in the region.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"32 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01152-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stable and predictable wet-season rainfall is crucial for soybean production in Brazil. However, climate and land-use changes, particularly Amazon deforestation, have increased rainfall variability in the region in recent decades. Here, we investigate long-term growing-season rainfall changes over two major soybean breadbaskets in Brazil from the perspective of atmospheric moisture transport. Utilising a novel moisture tracking framework based on a Lagrangian model guided by observations, we identify moisture source regions where evaporation contributed to rainfall over these breadbaskets. Furthermore, we quantify the relative contributions of source evaporation versus atmospheric (thermo)dynamics changes to downwind rainfall variability. Our results indicate that deforestation-induced evaporation declines have negatively impacted downwind rainfall in the breadbasket regions. However, strengthened circulation, evidenced by increased water vapour transport and low-level wind speeds consistent with decreased tree cover, has enhanced moisture transport from upwind regions (including Amazonia and the Atlantic Ocean) to the Brazilian soybean breadbaskets. This highlights the compensatory effects of deforestation on rainfall through decreased evaporation and altered atmospheric (thermo)dynamics, and how these effects may influence downwind soybean productivity in South America. Further understanding these interactions is critical for developing land management strategies to mitigate the agricultural impacts of climate change in the region.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.